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Optimal Sampling Augmentation and Resource Allocation for Design with
Inadequate Uncertainty Data

Student: Pin-Yi Lin Advisor: Dr. K.-Y. Chan

Department of Mechanical Engineering
National Cheng Kung University

ABSTRACT

Uncertainty models in reliability-based design optimization problems require a large amount
of measurement data that are generally unavailable in engineering practice. Each measurement
requires resources, sometimes costly. Although a comprehensive set of measurements could lead
to design that is more applicable, engineers are constantly challenged to make timely design
decisions with only limited information at hand. In the literature, Bayesian binomial inference
techniques have been used to estimate the reliability value of a function of uncertainties with
limited samples. However, existing methods assume data set as one sample for each uncertain
quantity, while in reality we consider one sample as one measurement on a specific quantity.
The relative contributions of uncertainties on the final optimum should be considered when

adding samples.

In this thesis, we use the concept of sample combinations to reveal the relative contributions
of uncertainties when adding samples. We propose a sampling augmentation process to add
measurements of uncertain quantities only when they are ‘important’ by allocating resource
more efficiently. To alleviate the impact of bad samples, biased samples that would affect
the evaluation of reliability inference will be filtered via a mechanism through Markov chain
Monte Carlo method. Once a desired reliability target and a user-specified confidence range
are provided by the designer, a confidence bound limit that predicts the upper bound of no-
failure confidence is then calculated. This confidence bound limit is then considered in a
reliability-based design optimization framework as constraints. Additional measurements on
critical constraints with respect to uncertainties in the form of discrete samples are necessary.
Design then iterates until the desired targets are reached. In this work our method could
minimize the efforts and resources without assuming distributions for uncertainties. Several

examples are used to demonstrate the validity of the method in product development.
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Chapter 1 Introduction and Motivation

1.1 Introduction

Reliability is one of the most critical attributes in product and process design [1]. Performances
of products need to undergo various test procedures and ensure their satisfactions before they
are in the hands of customers. Therefore reliability is the probability that a system satisfies a
given limit state function that defines failure and success under various sources of variations and
uncertainties. Figure 1.1 shows the reliability analysis procedure that quantifies the impacts
of uncertainties through a limit state function. These sources of uncertainties are inevitable in
product development process because they exist in the environment, in the human who uses
them, in the measurements, as well as in the manufacturing processes. Due to the advancement
of living quality, many customers consider reliability has a higher priority over cost when
choosing a product. Therefore, in the past decades, the engineering and design community has
developed various methods to improve reliability of an engineering system. In the literature, we
use reliability-based design optimization (RBDO) to indicates methods that are developed to aid
engineering analysis under uncertainties early in the design phase in the product development

process [2].

PDF of limit state
function

Uncertainty

A B = Pr[G < demand]

PDF

Limit state
function

Random variable X >

PDF

> g=0

>

Limit state function g(X)

Figure 1.1: Reliability analysis procedure



In RBDO framework, a standard optimization routine is coupled with reliability analysis
that requires each design candidates to be feasible yet reliable. This coupling increases the
computational cost of RBDO and has been one of the most studied area in RBDO literature.
Examples of these methods include: the first/second order reliability method [3-5], adaptive
importance sampling [6], advance mean value [7], and its hybrid variant [8], sequential opti-
mization and reliability assessment [9], and single-loop method [10]. Furthermore, methods for

reliability assessment have been proposed to enhance numerical efficiency and stability [11-13].

The first step in reliability analysis is to obtain the models of uncertainty. Quantifying
uncertainties requires a large amount uncertainty data. In the literature uncertainty can be
classified into one with probability distributions and one with limited available samples. When
the random property of an uncertainty can be completely known and modeled as a statistical
distribution, it is defined as an “aleatory” uncertainty; whereas an uncertainty with only limited
available samples is defined as an “epistemic” uncertainty. Although most RBDO research
assumes the underlying distributions of all uncertainties be known, in actual engineering design,
much of information regarding the uncertain quantities is only available in the form of limited
samples instead of probability distributions. In fact, statistically the exact distribution of
aleatory uncertainties can only be known when the one has infinite number of samples about the
uncertainty. In most cases, we extract the probability distribution via inferring from samples,

as Figure 1.2 shown. We can summarize that when an uncertain quantity has abundant sample

Population

Sampling Inferece

Figure 1.2: Sample Inference

measurements, we treat them as “aleatory” uncertainty with distributions inferred from the
samples. However, in practical engineering application, the amount of samples is extremely

restricted due to limited cost and time. As a results, the size of samples are usually not enough



to infer the probability distribution of population with high confidence. We call such samples

as inadequate uncertainty data.

When the available uncertainty data is inadequate, the classical probability theory [1-13]
may be improper to model uncertainties. Most probability analysis and design assume that
uncertainties are known for distributions can not capture the reality of engineering practice.
How to use epistemic uncertainties to do reliability analysis becomes a bottleneck in engineering
applications. To deal with inadequate uncertainty data, different methods have been developed
in the literature. Some researchers concentrate on inferring the probability distributions of
uncertainties from a small sample sets so as to make RBDO algorithms applicable [14-16].
However, inferring a probability distribution with a few samples could generates large errors
and results in erroneous results in the reliability prediction [17]. Another approach focuses
on reliability analysis and design optimization without inferring the probability distribution of
uncertainties, such as possibility-base design optimization (PBDO) [18,19] based on possibility
theory [20-25], evidence-based design optimization (EBDO) [26] based on evidence theory [27—
29], and Bayesian RBDO [17,30,31] based on Bayes theory [32-35].

The possibility-based and evidence-based methods have the weakness that the uncertainties

are modeled more or less based on the *

‘ expert opinions” that may be different for each expert
and may even be conflicting [31]. Methods based on Bayes theory are called Bayesian approach.
In this thesis, Bayesian approach is better suited to evaluate the reliability due to the advantage
that (1) it provides a unified way for aleatory and epistemic uncertainty in a single framework,
(2) it can conveniently update the degree of uncertainty, and (3) it is widely applied in many
engineering and science fields. For example, Bayesian theory is used to estimate the multi-
frequency offset to assist decision-making in a multi-objective environment [36], to access the
reliability of a power network [37], to estimate the reliability of on-site lifetime measurements
that are fuzzy in nature [34], to estimate the reliability of an ‘inexact’ small data set [35], to
series systems of binomial subsystems and component [38], to the effectiveness of reliability
growth testing [39], to robust tolerance control and parameter design in the manufacturing
process [40], and to input uncertainty modeling [41]. Bayesian updating has been implemented
using the Markov chain Monte Carlo (MCMC) simulation for structural models and reliability

assessment [42]. Due to the advantages of Bayesian approach, in this thesis, Bayesian approach

would be used to evaluate reliability.



1.2 Motivation and Objective

In engineering practice, the uncertainties are often provided as a small number of samples
from historical data or actual experiments. Although several methods have been developed to
tackle evaluation of reliability with limited samples, the amount of samples is still great while
considering the expense of measurements. In existing literatures, the reliability estimation
is obtained by using a set of all uncertain quantities, the redundant samples which means the
samples have no significant effect on accuracy of reliability evaluation is also measured. The cost
of measurement can be optimized if the measurement of redundant samples can be minimized.
We would like to develop a much more efficient measurement scheme by only measuring samples
when they are important. In other words, if the lack of a certain sample of an uncertainty would

affect the accuracy of reliability estimation, that sample should be added.

The relative importance of different uncertainty on the reliability analysis received little
attention in the literature. Without understand which sample is more critical, we are unable
to cast these samples more wisely. For example, if we have three uncertain quantities, A, B, C.
The lack of information about A will decrease the accuracy of reliability estimation and have
the greatest influence on optimization results compared with the other uncertainties. Therefore,
with limited resources, the need to increase the sample size of A has the higher priority over B
and C. In the literature, most measurement schemes suggest that an entire set of measurements
on A, B, C be added to existing sample when additional samples are necessary. We believe that
samples should be treated differently such that their relative importance on reliability analysis

can be revealed.

In this thesis, we propose an approach to cast the minimal amount of additional samples
required to achieve a specific level of accuracy in reliability analysis, and then use it in the
optimal product design under inadequate uncertainty data. In addition to the reveal the relative
importance of uncertainty samples, we also emphasize on measurements that might be wrong.
This biased sample measurement could alter the reliability estimation, especially for a small
sample size. We would like to develop a mechanism such that these biased samples will not
undermine our design process. We want to eliminate the improper samples to enhance the

accuracy of reliability estimation under limited samples situation.



1.3 Organization of the Thesis

The reminder of this thesis is organized as shown in Figure 1.3 . We first introduce the reliability
estimation of sample data via Bayesian theory and clarify meaning of samples in Chapter 2, the
sample filter is also via Markov chain Monte Carlo is also introduced in Chapter 2. The proposed
algorithm which doing sampling augmentation and resource allocation in optimization iteration
is introduced in Chapter 3. Two single level case studies about one mathematical example and
passive vehicle suspension design are demonstrated in Chapter 4. The case study about passive
vehicle suspension design is also extended to complex multilevel system design in Chapter 5.

Finally, conclusions and suggestions of this thesis are presented in Chapter 6.

Chapter 1
Introduction and Motivation

Y

Chapter 2
Bayesian Reliability Inference
with Sample Data

v

Chapter 3
Optimal Sampling Augmentation
and Resource Allocation

|
] L

Chapter 4 Chapter 5
Case Studies in Single Level Case Studies in Complex
Systems Multilevel System
Chapter 6

Conclusions and Future work

Figure 1.3: Organization scheme



Chapter 2 Bayesian Reliability Inference
with Sample Data

The information about the underlying distributions of uncertainties are mostly assumed to be
well-known in the reliability-based design optimization community. However, both aleatory and
epistemic uncertainties that are common in practical engineering applications, do not always
have complete information about the uncertainties. Yet we have to make appropriate design
decision based on limited resources. The evaluation of reliability with inadequate uncertainty
data becomes a grand challenge for designers. In recent years, Bayesian theory has been applied
to tackle this challenge via inversion of probabilities. In this chapter, we will first introduce
Bayesian theory in data inference in section 2.1, reliability estimation with sample data will
then be discussed in section 2.2; Markov chain Monte Carlo that filters poor samples will be

introduced in section 2.3.

2.1 Data Inference using Bayesian Theory

Bayesian theory bas been applied to infer a population by samples. Because the Bayesian theory
is a new perspective of Bayes theorem via inversion of probabilities, we will first introduce Bayes

theorem before talking about Bayesian inference.

2.1.1 Bayes Theorem

Bayes theorem is a concept of conditional probability that defines the probability of event
B given event A. Equation (2.1) shows the mathematical representation of the conditional
probability of event B given event A happening.

Pr(AnN B)

Pr(B|A) = Pr(A)

(2.1)

Pr(A) is the probability of event A, Pr(A N B) is the probability of the joint space of both

events A and B. Similarly, the conditional probability of event A on the occurrence of event B



is shown as Equation (2.2).

Pr(AN B)
Pr(A|B) = ————= 2.2
(AIB) = ~5 22)
After rearranging the fractions in the conditional probability formula, one can get
Pr(An B) = Pr(A|B) x Pr(B) (2.3)

Equation (2.3) is known as the multiplication rule for probability. It restates the conditional
probability relationship of an observed event given an unobservable event in a way that is useful
for finding the joint probability Pr(A N B). If we denote that B¢ is the set of complement of

event B, then
Pr(AN B¢) = Pr(A|B¢) x Pr(B°)

Since A = (AN B)U (AN B°), the law of total probability states that the probability of event

A can be calculated by summing the probability of its disjoint parts, then
Pr(A) = Pr(AN B) 4+ Pr(AnN B9 (2.4)

Substituting Equation (2.4) into the definition of conditional probability, we then have

Pr(AnN B)
Pr(B| = Pr(AN B) 4+ Pr(AN Be¢) (2:5)

Using the multiplication rule to find each of these joint probabilities, Bayes theorem for a single

event can then be derived as :

Pr(A|B) x Pr(B Pr(A|B) x Pr(B

br(B1A) - (A|B) x Pr(B) _PAIB) < PB) o
Pr(A|B) x Pr(B) + Pr(A|B¢) x Pr(B¢) Pr(A)

Bayes theorem is a restatement of the conditional probability formula with the joint probability

in the numerator being found by the multiplication rule, and the marginal probability in the

denominator being found by the law of total probability followed by the multiplication rule.

Bayes theorem for a single event can be extended to general n events. If an observable
event A follows A = (ANB))U(ANDBy)---U(AN B;), the law of total probability states that
the probability of an event A is the sum of the probabilities of its disjoint parts. Therefore, the

probability of event A can be written as :

Pr(A) = En: Pr(AN B;) (2.7)

7



Using the multiplication rule on each joint probability gives :

Pr(A) = zn:Pr(/HBj) x Pr(B;) (2.8)

j=1
From definition, the conditional probability Pr(B;|A) can also be expressed as

(2.9)

Using the multiplication rule in the numerator, with the law of total probability on the denom-

inator, we can show that :

Pr(A|B;) x Pr(B;)
PrBIA) = S 5 (A1 By) < Pr(B) (2.10

Equation (2.10) is known as Bayes theorem of n events which was first published in 1763

after the death of its discover, Reverend Thomas Bayes.

Note that since event A and B; is with different amount of information, events A and
B; are not treated symmetrically. The B; are unobserved event and we do not know the
outcome as a priori. The event A is an observed event with probability distributions known.
The probabilities Pr(B;), called prior probability, are assumed known before we collecting the
outcomes. The likelihood of the unobservable events B; is the conditional probability that A
has occurred given B;. Thus the likelihood of events B; is given by Pr(A|B;). The likelihood is
the weight given to each of the B; events given by the occurrence of event A. Pr(B;|A) is the
posterior probability of event B;, given that event A has occurred. This distribution contains
the weight we attach to each of event B; after we know event A has occurred. It combines our

prior beliefs with the evidence given by the occurrence of event A.

In Bayes theorem, each of the joint probabilities (posterior probability) are found by mul-
tiplying the prior probability Pr(B;) times the likelihood Pr(A|B;). The only thing we need
in the prior is the relative weights we give to each of possibilities. As a summary, posterior is

proportional to the prior times the likelihood. Bayes theorem is often written in form as :
posterior « prior X likelihood (2.11)

A comprehensive reviews of Bayes theorem can be found in Reference [43].



2.1.2 Binomial Distribution

Bayes theorem states that we could update the information about the posterior by getting
observations from population. As previous section shown, event A is an event observed from
population. Obtaining outcomes of event A can be represented as sampling from an underly-
ing distribution. Furthermore, sampling from a underlying distribution can be referred to as
random sampling from a very large population that follows the binomial distribution same as
coin tossing. In order to realize, in what follows, the case with coin tossing is briefly described,
followed by random sapling from a large population. We intend to show the similarities between

coin tossing and random sampling.

Coin tossing

A coin is tossed N times and count the number of heads occurring. The outcome of one toss
is independent of the outcome of previous toss. The probability of getting heads is the same
value for all tosses due to uses of the same coin. The probability of getting head is denoted as

¢

p. Getting head is referred as “ success.”

Random sampling from a very large population

We draw a set of samples with size N. Assuming all draws are taken under the same duplicate
conditions. Some items in the population have certain attribute s. We count the number of the
items having attribute as in coin tossing. The outcome of any draw is independent of previous
outcomes. The probability of having certain attribute s is denoted as p. Having the attribute

¢

s is referred as “ success.”

Both random sampling from a very large population and coin tossing have properties that
meet the characteristics of a binomial distributions. There are several properties in common.

These properties are characteristics of binomial distribution.

These characteristics include:

4

e There are N independent trials with outcomes being either “ success” or “ failure”.



e The probability of “success” is constant over all the trials. Let p be the probability of

success.”

e 7 is the number of “successes” that occurred in the N trials. r can take on integer values

0,1,...,N.

Sampling from an underlying distribution can be referred to as a binomial distribution.
The binomial random variable r given the parameter value p is expressed as probability density

function (pdf) f

N r N—r
frlp) = p'(1—p) (2.12)
r
forr=0,1,--- , N where
N N!
. rl x (N —r)!

We can use the binomial random variable to calculate the likelihood of “success” event in the

following section.

2.1.3 Bayesian Binomial Inference

In a large population, we denote p as a proportion of the population with some attributes. If
we want to know the probability of having some attribute in population, we need to take a
random sample from the population and make inference of population. Bayesian inference is
new perspective of Bayes theorem. Bayesian inference can be applied to different distributions.
Since sampling from an underlying distribution can be modeled as a binomial random variable,
we will only introduce the Bayesian binomial inference. The comprehensive reviews of Bayesian

Statistics can be found in [43-47].

In this section, we briefly summarize the Bayesian binomial inference and its underlying
assumptions. Let an event with outcomes modeled as a binomial process. Given N trials, the
probability of having r success outcomes can be presented by r ~ Bin(N,p) where Bin() is

the binomial process and p is the probability of successful events. The conditional probability
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density function f of r given p follows binomial random variable function (express in probability

density function) as Equation (2.13)

N r N—r
f(rlp) = prl—p) "fory=1,...,N (2.13)
T

Since we do not know the probability of successful events p, we let r be fixed at the number
of success outcome we observed and p vary over its possible values, the likelihood function is

then :

N N
f(rlp) = prl—p) Tfor0<p<1 (2.14)
r

We see that we are looking at the same relationship as the distribution of the observation r
given the parameter p in Equation (2.13) and (2.14). But the subject of the Equation (2.14)

has changed to the parameter for the observation held at the value that actually occurred.

From Bayes theorem, posterior is proportional to the prior times the likelihood. Therefore

f(plr) < f(p) x f(r|p) (2.15)

Equation (2.15) only gives the shape of the posterior distribution. To get actual posterior, Bayes
theorem states that the distribution of p can be obtained using conditional probability concept
by divided a normalized factor fol f(p) x f(r|p) to make sure the posterior is a probability

distribution, meaning the area under posterior integrates to 1.

o= S x f{rlp)
TR TR (218)

where f(p) is the prior distribution of p, f(p|r) is the posterior distribution of p with r success,

and f(r|p) is the likelihood of r given p.

If we want to use Bayes theorem from Equation (2.16), we need a prior distribution f(p)
about the possible value of the parameter p before getting the data. It is important that the
prior can not construct from the data. In order words, the prior need to be independent of the
likelihood. This means that the observed data must not have any influence on the choice of

prior. Following, we will look at some possible priors.

11



Using a Uniform Prior

If we don’t have any idea about the prior distribution f(p), or may want to be an objective
as possible and not put personal belief into the inference, we should choose a prior that does
not favor any value over another. In this case, the uniform prior that gives equal weight to all

possible values should be used. The formulation about a uniform prior is
flp)=1for0<p<1 (2.17)

With a uniform prior, the posterior distribution is proportional to the likelihood as :
N N
fplr) = pr(l—p) "for0<p<1 (2.18)
r

Equation (2.18 ) shows that the posterior follows a beta distribution beta(a, §) where o = r+1
and 8 = N —r + 1. Therefore, the posterior distribution of p given r is easily obtained. We
didn’t to do any integration but only to look at the exponents of p and (1 — p).

Using a Beta Prior

Suppose a beta(a, ) prior density is used for p :
Nla+8) @

: = 1—p)PVforo<p<i 2.19
flp:a,B) NORGE (1-p) or0<p< (2.19)
The posterior is proportional to the prior times the likelihood as :
Lo+ 6) (o -1 N N-—
fpr) ox ————2ple(1 — p)B=D « p(1—p)" " 2.20
(i) o ™ =) raen (2:20)

Since the either the prior and the likelihood will neither be affected by multiplying by a constant,
we could ignoring the constant that don’t depend on the parameters r,p in Equation (2.20),

This gives :
f(p|r) oc plet =1 (1 — p)BEN==D for 0 < p < 1 (2.21)

Recognizing Equation (2.21) with beta distribution with parameter o/ = a+r and ' = f+N—r.
We can discover that we only need to add the number of successes to a and add the number

of failures to 3 of observations :

__ D@4 B+N)  evanyq _pyv-res)
o) = farnrw—rrp? P (222)
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for 0 < p < 1. The most important merit is that the posterior density can be obtained without
going through the integration. There is one more thing to be noted that the uniform prior is a

special case of the beta distribution where is beta(1,1).

Conjugate Family of Priors for Binomial Observation is the Beta Family

Uniform and Beta priors enable us to calculate the posterior distribution by simply adding the
exponents of p and (1 — p), respectively. Therefore, for a beta prior distribution and a binomial
likelihood, we can get a beta posterior by the simple rule “add successes to «, add failures
to 8.7 There is a big advantage that all we have to do is use the observations to update the

parameter of the conjugate family prior to obtain the conjugate family posterior.

2.2 Reliability Estimation with Sample Data

Design optimization with both aleatory and epistemic uncertainties should take reliability into
consideration. Reliability is the probability of acceptance of a quality function q. However, the
reliability estimation can not be evaluated by the same concept with inadequate uncertainty
data. The evaluation of reliability without adequate uncertainty data can be obtained by the
concept from Bayesian inference. Therefore, in this section, we will first introduce the Bayesian
inference of reliability, then define properties about confidence level of reliability estimation,

then clarify about the definition of “ sample 7, and then give a reliability estimation example.

2.2.1 Bayesian Inference of Constraint Reliability Values

Let N be the number of samples, p be the probability of successful outcomes, and r be the
number of successful outcomes. Before we measure samples, we have no idea about the prior
of p; therefore, a uniform prior for p, p ~ beta(a = 1,8 = 1), and a binomial likelihood
f(r|p) are used. Based on Equation (2.16), the posterior f(p|r) follows a beta distribution with
parameters a =r+ 1 and = (N —7r) + 1

Dla+B) @1

Rt - (223

f(plr) =

13



The updated distribution for p is then beta(r+1, (N —7)41). Eq.(2.16) can be used iteratively

to update p with the added information of N and r.

Bayesian binomial inference in updating probability distributions can be used to calculate
the probability of a function with discrete samples. Let Xg and Ps known for samples and Xy
and Py known for distributions of the random variable X and parameter P, respectively. To
obtain the reliability distribution R, reliability inference must be performed at every sample
point while considering uncertainties known for distributions. The probability of a constraint
g(X, P) being feasible given the kth sample set is obtained at different sample points for

uncertainties known for distributions as Figure 2.1 and Equation (2.24).
Ry = Prlg(Xvu, Pu)|(xs,ps)e < 0] (2.24)

Since a constraint being feasible is generally referred to as ‘reliable’, we use Ry instead of p

N = 3 samples
k=1 lr=2 k=
- N
l~ N
\\ ] \
[} \
\I \
n \
/NN
7 S - N

Figure 2.1: Feasible-infeasible realization of a (Xg, Ps) sample given distributions of (Xy, Py)

in the remaining of the text. The probability Ry is the expected feasible realization of one
sample. Therefore, the expected total number of successful events E[r| with N samples of

feasible realizations is the sum of the probabilities of all samples :

E[r] = iRk (2.25)

Equation (2.25) is valid for both when only samples are available and when there is a mix
of samples and distributions. Using E[r] as the number of successful outcomes, the resulting
posterior reliability distribution R is followed a beta distribution with parameters o = E[r]+1

and f = N — E[r] + 1 from Bayesian binomial inference as :

R ~ beta(E[r] + 1,(N — E[r]) + 1) (2.26)
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2.2.2 Confidence Range and Confidence Bound

With the availability of the distribution of R with different k&, we define confidence range and
confidence bound of the reliability calculation in this work. The confidence range (C'R) is the

likelihood probability of the estimation of R being greater than a target R; as:

Ry Oé
cr-mins -1 [ e

The confidence bound (C'B) is the right-most distribution of all infinite number of possible beta

(1 — J,‘)’B_leE =1- q)Beta(Rta Q, ﬁ) (227)

distribution which capturing the highest confidence level given N and Ry. In other words, C'B
is the upper bound of CR. The upper bound of the beta distribution occur when E[r] = N so
the parameters of beta distribution is « = N+1 and g = 1. From the definition, the confidence

bound can be obtained as
CB =max[Pr(R > R;)] =1 — Ppeta(Re, N +1,1) (2.28)

This equation can be simplified by substituting the « = N + 1 and = 1 into Equation (2.27)

B 2T HD & D
CB_l—/xZO NOESH =Ndx (2.29)

We know I'(1) =1 and I'((N + 1) + 1) /T'(NV + 1) = N + 1,the constant 1;((%\[%11));211)) reduces to

Confidence Bound (CB)

0 5 10 15 20 25 30 35 40
Sample Size N

Figure 2.2: The N-R;-C'B diagram

just N 4 1. The Equation (2.29) becomes

Ry
CB=1-(N+ 1)/ eNdr =1 RN (2.30)

=0
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This simple equation link the three quantities of interest N, R; and C'B together. Equation
(2.30) shows that the confidence bound of reliability target is a function of the sample size (N).
Figure 2.2 shows the relationship between the sample size and confidence bound with different
reliability target. We observe in this diagram that increasing N or decreasing R; will increase

CB. In order to provide higher confidence range, the increment of samples is necessary.

2.2.3 Clarification of “ Sample”

Reliability information with inadequate uncertainty data follows a beta distribution. As the
number of samples N increases, the estimation of reliability becomes more precise. When
N — oo, the distribution converges to a deterministic value with R being known exactly. The
case with infinite numbers of coincide with the assumption that the pdfs of all uncertainties

are known.

Methods in current literatures [17,30,35] assume data set include one sample as a set of
all uncertain quantities. This assumption may not reveal the true practice in the industry

where one sample means one measurements. For example, in vehicle suspension design, there

Table 2.1: Parameters in the form of samples in vehicle suspension design

Parameters Samples
Road irregularity, A Ay, Ag
Oil density, p P1, P2

Oil dynamic viscosity, nu | vy, Vs
Sprung mass, M My, My

Unsprung mass, m my, Mo

are several parameters in the form of limited samples, such as road irregularity, oil density,
and oil dynamic viscosity in damper, sprung and unsprung mass of vehicle. If we have two
measurements for each parameter as shown in Table 2.1, existing methods treat them as two
samples. However, these five parameters cannot be measured at same time using the same

instrument. We cannot decide which sample of a parameter should be matched to which of

16



another parameter to be one sample of a set of uncertainties. The relative contributions of
uncertainties should be considered. The concept of sample combination reveals the all possible
situation that each sample be matched. In this situation, we say that there are 10 samples
and 2° = 32 sample combinations. We denote the number of sample combination as N, in the
remaining the text and use the concept of sample combinations instead of number of sets of all

uncertainties as one sample.

2.2.4 Reliability Estimation Example

In this section, we will demonstrate Bayesian reliability inference using a mathematical example.
Let G(Py,Py) =1 —80/(P? + 8Py — 6.5) < 0 be an inequality constraint with two epistemic
random parameters Py, and P,. The underlying distributions of P; and Py are of Py ~
N(—8.2,0.08%) , Py ~ N(2.2,0.02%), but we assume this is not know to the engineers. Some
samples draw for P; and Py are shown in Table 2.2. The underlying distributions of both
parameters were unknown and therefore samples in Table 2.2 are the only information. When
no pdfs are given, each probability Ry, in Equation (2.24) becomes an indicator function where

I, = 1if G((P1,Ps);) <0, and Iy = 0 otherwise.

In the first case, lets’ assume we have 5 initial samples ( the first line in Table 2.2 for
P, P;). The number of trial (N) is not 5, instead, we use the concept “ Sample Combination”

defined as number of combinations (N,.). N. = 5% = 25.

Table 2.2: Samples of Py, Py

initial samples -8.191 -8.199 -8.196 -8.214 -8.213
P, -8.201 -8.191 -8.180 -8.207 -8.196
additional measurements

-8.200 -8.190 -8.198 -8.180 -8.190

initial samples 2.228 2187 2.225 2,194 2.1881
P, 2210 2.136 2.184 2.232  2.208
additional measurements

2211 2177 2190 2.191 2.1R82

By carrying out the probability analysis for all 25 combinations of samples, we obtain
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the indicator function I, of each sample combination, then the expected total number of
successful events E[r] in Equation (2.25) with N, sample combinations of feasible realiza-
tions is the sum of the probabilities of all sample combinations E[r] = S & I). There-
fore, summing of probabilities of all sample combinations, we get E[r] = Zg:cl I, = 21,
then using Equation (2.26), the reliability can then be modeled with the beta distribution
R ~ beta(E[r|+ 1, (N.— E[r]) +1) = beta(22,5). The reliability target R, = 0.9, we can calcu-
late the maximum probability these combination can exceed the reliability target as confidence
bound CB = max[Pr(R > R;)] = 1 — $®p,(0.9,26,1) = 0.9354 that means these combina-
tions’ maximum confidence range, then the confidence range becomes CR = [Pr(R > R;)] =

1 — ®pea(0.9,22,5) = 0.1118.

To show how confidence range changes with more samples, we demonstrate the second case
when sample size of P, and Py both are 15, E[r] = Y_0¢, I = 209. The reliability distribution
becomes R ~ beta(E[r]+ 1, (N.— E|r]) +1) = beta(210, 17) and the confidence range becomes
CR = [Pr(R > R;)] = 1=®pe44(0.9,210,17) = 0.9166. Casel is the reliability distribution of 25
combinations and case 2 is of 225 combinations. As shown in Figure 2.3, we assert that scenario
2 has better confidence range than the scenario 1 and that the more sample combinations, the

more precious estimate of the reliability distribution.

257

Reliability tar get
20+
> 15+
%)
g
10+
5t Pl
A
o Scenariol
0 =t
0.5 0.6 0.7 0.8

Reliability

Figure 2.3: Reliability distribution with different sample combination of reliability estimate

example
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2.3 Sample Data Filter via Markov Chair Monte Carlo

Measurement could go wrong. The quality of sample measurement would affect the accuracy
of reliability estimation. In order to avoid higher biased samples, a mechanism to filter out
samples is necessary. In this research we use the Markov Chain Monte Carlo(MCMC)

method as the filter mechanism.

2.3.1 Backgrounds on Markov Chain

Let X, denote the value of a random variable at time n, and let the state space refer to the range
of possible X value. A random variable follows a Markov process if its transition probabilities
between different values in the state space depends only on the random variable’s current state.

That is, we suppose that
PI‘{Xn+1 = ]lXO = io, .X1 = il, --;Xn e Z} = PI‘{Xn_H = j|Xn = Z} (231)

In order words, the current state of the random variable is the only information about the past
to predict the future of a Markov random variable. The other information would not affect
the transition probability. Therefore, a Markov chain process can be defined by its transition
probabilities (or the transition kernel) P;;, which represents the probability that the process

in state ¢ will transit into the state j as Equation (2.32)
B =Pr{i = j} = Pr{Xpp = j|Xn = i} (2.32)

Since the probabilities are nonnegative and the process must make a transition into some state,

we have :

Fij 20,4,5 2 0;

iﬂjzl,izo,l,...

j=0

(2.33)
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Let P denote the matrix of one-step transition probabilities;;, so that

Py Poi Poo
Py P P

P= : : : (2.34)
Py Py P

The one-step transition probabilities P;; has already been defined as Equation (2.32). Now, we
define the n-step transition probabilities P} to be the probability that a process in state 7 will

be in state j after n additional transitions. That is,
Pl =Pr{Xpk = j|Xpg =i}, n>20,i,j >0 (2.35)

The Chapman-Kolmogorov equations provide a method for computing these n-step transition

probabilities. These equations are as Equation (2.36) shown

prm =" Prpmfor all n,m > 0, all i, j (2.36)
k=0

and are most easily understood by noting that Fj Py represents the probability that starting
in ¢ the process will go to state j in n + m transitions through a path which takes it into state
k at the nth transition. Hence, summing over all intermediate states k yields the probability

that the process will be in state j after n + m transitions. Formally, we have
Pyt = Pr{zpym = jlXo = i}

= Pr{Xpim = j, X, = k| Xo = i}

k=0

oo (2.37)
= Pr{Xpim = j| X0 =k, Xo = i} Pr{X,, = k| X, = i}

k=0

[o¢]
o m pn
*E ijPik
k=0

Let P(™ denote the matrix of n-step transition probabilities Pj. Equation (2.36) then

states :

prtm) — p»)  pm) (2.38)
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where the dot represents matrix multiplication. Hence, by induction
Pm — pr-1+l) _ prn-1 . p — pPn (2.39)

That means that the n-step transition matrix may be obtained by multiplying the matrix P by
itself n times. If the limit of the Markov chain 7; in Equation (2.40) exists and is independent

of i,
hm Pj,j >0 (2.40)

then 7; is the unique nonnegative solution of :
o0
= Z mil5,7 2 0,
i=0
(o9}
Z 7Tj —h
j=0

When the initial state is chosen according to the probabilities 7;, 7 > 0, the probability of being

(2.41)

in state j at any time n equals to 7;. Therefore, 7;,7 > 0, is called stationary probabilities.

Mathematically, we can state that if
Pr{Xo=j}=m;,j >0 (2.42)
then
Pr{X, =j}=m, foralln,j >0 (2.43)

Equations (2.42) and (2.43) can be proved by induction, for if we suppose it true for n, then

the stationary probability can be derived by conditioning on the state at time n. That is,
Pr{X,p1 =j} =Y Pr{X,n = j|X, =i} Pr{X, =i}

= Z P;;m; by the induction hypothesis (2.44)

%

= m; by Equation (2.41)

It can be shown that 7;, the limiting probability that the process will be in state j at time n,
also equals the long-run proportion for time that the process will be in state j. Comprehensive

reviews of Markov chain can be found in [48-50].
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2.3.2 Markov Chain Monte Carlo by Metropolis-Hasting Algorithm

A Markov chain that generates samples randomly from previous samples is called a Markov
chain Monte Carlo (MCMC). MCMC ensure that the transition probabilities between sample
values are only function of the most recent sample values. The application of MCMC meth-
ods on different fields has shown great impact in recent decades. Statisticians, physicists and
engineers attempt to compute complex integrals by expressing them as expectations for some
distribution and then estimate this expectation by drawing samples from that distribution. To
solve this problem are the roots of MCMC methods. In this thesis, we randomly draw samples
from population, we want to construct a mechanism to filter out samples. The characteristic
of Markov chain that the future state is only related to current state let us do not to consid-
erate the past samples data. Therefore, MCMC is method that generates samples which is
quite close the situation in this thesis. Therefore, we use the MCMC to construct the filter
mechanism. In different MCMC methods, a considerable amount of attention is being devoted
to the Metropolis-Hastings(M-H) algorithm, which was developed by Metropolis, Rosenbluth,
Teller(1953), and subsequently generalized by Hastings(1970). Following, we will introduce the
MCMC by Metropolis-Hasting algorithm.

Metropolis-Hasting algorithm, can be used to generate a time reversible Markov chain
whose stationary probabilities are 7(j),7 = 1,2,.... Suppose our goal is to samples from target

distribution 7 and very difficult to compute. Then we start with Metropolis-Hasting algorithm.

To begin, let Q be any specified Markov transition probability matrix on the integers, with
q(i, j) representing the row i column j element of Q. Now define a Markov chain {X,,,n > 0}
as follows. When X,, = ¢, generate a random variable Y such that Pr{Y = j} = ¢(4,7),j =
1,2,.... If Y = j, then set X, 1 equal to to j with probability a(i, j), which is referred as the
probability of move, and if the move is not made, the process again returns ¢ as a value from
the stationary probability with probability 1 — ax(é, j). Under these condition, the sequence of

states constitutes a Markov chain with transition probability P; ; as

Py =q(i,j)ar(i,j),if j #1
Poi = qli,i) + 3 a6, k)(1 — a(i, k)

ki

(2.45)

where ¢(i, 7) is referred to as the proposal or candidate-generating distribution, represents that
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when a process is at the point ¢, the density generates a value y from ¢(i, 7).

This Markov chain X,, will be time reversible and have stationary probabilities 7 (j) if

m(i)Piy = 7(j) P i j A

m(i)q(i, j)ar(i, ) = 7(5)q(j, i)ar(j, )

(2.46)

To show the reversibility for the Markov chain, let us set
ax (i, 7) = min (M 1) (2.47)
™

then Equation (2.46) is also satisfied. If

- m)el:9)
ag(i, j) = R (2.48)
then ax(j,7) = 1 and Equation (2.46) follows, if ay(i,7) = 1 then :
- _ w0 g)
e m(j)q(j, 1) (249)

The probabilities ay (i, 7) and ag(j,i) are thus introduced to ensure that m(j) satisfies the re-
versibility. Thus we have shown that in order for 7(j) to be reversible, the probability of move

must be set to

TG N o
ay(i,7) = min <7r(i)q(i,j)’1>7 fm(i)q(i,j) > 0

= 1, otherwise.

(2.50)

We now summarize the Metropolis-Hasting algorithm in algorithmic form initialized with

arbitrary value sy and suppose that our goal is to draw samples from target distribution 7 :

1. Repeat for j =1,2,..., N.

2. Using current s; value, draw a candidate point s* from some proposal distribution ¢(s1, s2),
which is the probability of returning a value of sy given a previous value of s;. The
proposal distribution q is essentially arbitrary provided it can move around the entire

space.

3. Generate u from U(0,1).
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4. Calculate the probability of move ay, which is also called acceptance probability.

ﬂ-(sj)Q(Sjv S )
5. If u < ay(s;, s*), set sj41 = s*, go to step 7.
6. Else, set sj11 = s;, go to step 7.

7. Return the values {s1,s9,...,sn5}.

A detailed review about Metropolis-Hasting algorithm is given by Chib and Greenberg [51].

2.3.3 MCMC Modification with Bootstrap

Section 2.3.2 describe the Metropolis-Hasting algorithm to draw samples from a known target
distribution 7. However, in this work, we attempt to draw actual samples from population
which the underlying distribution is mostly unknown. The underlying distribution is the tar-
get distribution 7 in Metropolis-Hasting algorithm. To apply Metropolis-Hasting algorithm,
we need to know the target distribution 7 and proposal distribution ¢. Therefore, we must
construct these two distributions. The target distribution will be estimated directly by exist-
ing samples. The proposal distribution must be different from target distribution. Therefore,
we use Bootstrap concept to generate a different distribution as proposal distribution. The
details of the Bootstrap concept and two modifications of MCMC for sample filtering will be

introduced in this section.

Bootstrap concept

Based on Metropolis-Hasting algorithm the more similar the proposal distribution and tar-
get distribution, the higher convergent rate of Metropolis-Hasting algorithm. The bootstrap
method can provide an efficient way of estimating the distribution using the re-sampling tech-
nique [52,53]. Therefore, the bootstrap method is used to estimate the statistical parameter
of the proposal distribution ¢. Figure 2.4 illustrate the procedure of the bootstrap method.

The idea of bootstrap method is to generate many set of bootstrap sample by re-sampling with
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Initial sample, size n
(Unknown distribution)

— 7 1\

Resampling with Pb bootstraps Resampling with
replacement, size n replacement, size n

Estimation of statistical parameters of unknown distribution

Figure 2.4: The procedure of bootstrap

replacement from original samples. Let the size of the initial samples be n and the number of
bootstrap re-samplings be p,. Each resampling procedure selects n samples with replacement of

n original data. The estimate statistical parameters of unknown distribution by p, bootstraps.

If the acceptance probability always be one, we can not use the Metropolis-Hasting al-
gorithm to construct sample data filter. Therefore, we use Bootstrap method to generate a
proposal distribution which different from directly estimate from original samples to avoid the

acceptance probability in Equation (2.47) of MCMC always be one.

MCMC of Accepting the Current Sample

The accuracy of a reliability estimation would be affected by biased samples. Therefore, we
need to construct a filter mechanism to ensure a fair judgment. The acceptance probability of
Metropolis-Hasting algorithm in MCMC is referred to as the probability of the move of a new

sample.

In this work, we want to use the acceptance probability as a judgement about biased

samples. If we want to use the concept of acceptance probability, the target distribution
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and generating distribution must be known. We obtain the target distribution by use the
statistic toolbox in commercial tool Matlab of existing samples. And the proposal distribution

is obtained by re-sampling technique of Bootstrap method.

Given

Markov Chain Monte
Samples Carlo Filtering
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Figure 2.5: The procedure of MCMC of accepting the current sample

Figure 2.5 illustrates the procedure about the sample data filter via MCMC of accepting

the current sample. We summarize the procedure in algorithmic form as following:

1. Estimate statistical parameters of the underlying distribution by directly using existing

samples as target distribution 7.

2. Resample and estimate the statistical parameters by bootstrap method as the proposal

distribution q.

3. Draw a sample s* from population, calculate the acceptance probability a via the current
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sample s..

4. Generate u from U(0, 1).
5. If u < ag(se, s*), then accept sample s* as additional sample.

6. Else, set current sample s. as additional sample.

MCMC of Accepting An Additional Sample

The original concept of Metropolis-Hasting use the current sample as the new sample when the
rejection occurring. We are afraid that if the current sample is also a biased sample, which out
of inspection, the repeatedly usage about the biased sample would have significant effect on
reliability estimation. Therefore, we draw an additional sample when there are rejected samples

of MCMC until there are an acceptable sample exists.
Figure 2.6 illustrates the procedure about the sample data filter via MCMC of accepting
an additional sample. We summarize the procedure in algorithmic form as following:
1. Estimate statistical parameters of the underlying distribution by directly using existing

samples as target distribution 7.

2. Resample and estimate the statistical parameters by bootstrap method as the proposal

distribution q.

3. Draw a sample s* from population, calculate the acceptance probability a; via the current

sample s..

4. Generate u from U(0, 1).
5. If u < ag(se, s*), then accept sample s* as additional sample.

6. Else, turn to step 3.

27



Given

Samples

\ 4

Probability Distribution

Estimate
distribution of
current samples

Resample &
Estimate
distribution of

pseudo-samples

by bootstrap

Target
Distribution

Proposal
Distribution

Markov Chain Monte
Carlo Filtering

Draw a sample

A

S*

Calculate
acceptance
probability
ag

Generate
random
uniform value
u

u < ag

Yes

v

Accept s*as
additional sample

No
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Chapter 3 Optimal Sampling Augmentation

and Resource Allocation

In practical engineering applications, the underlying distribution about a specific uncertainty
is not known. Limited samples from measurements or experimental results are generally the
only available information of the uncertainty. In Chapter 2, we have described the fundamental
concepts of using these samples to infer the distribution. In this section, we emphasis on
how to cast additional samples to aid engineering decision-making in a reliability-based design
optimization with limited samples. In this chapter, we introduce the optimization model of
RBDO with inadequate uncertainty data, optimal sampling augmentation for design, and then

the resource allocation.

3.1 RBDO with Inadequate Uncertainty Data

In this section, we focus on assist engineers to make decision in a reliability-based design
optimization with limited samples. First, we will introduce reliability-based design optimization
(RBDO), discuss about the activity of reliability constraint with inadequate uncertainty data,

and construct the generalize optimization model of RBDO with inadequate uncertainty data.

3.1.1 Introduction of RBDO

In engineering design, the traditional deterministic optimization model has been successfully
applied to systematically reduce the cost and improve quality. However, the existence of uncer-
tainties in physical quantities such as manufacturing tolerances, material properties, and loads
requires a reliability-based approach to design optimization [54,55]. Optimal design problems
which consider uncertainties as random variables or parameters are formulated as problems
with probabilistic constraints. Eq.(3.1) is a generalized single-objective probabilistic formula-
tion with random design variables D, random parameters P, deterministic design variables d

and deterministic parameters p. The objective f is a function of deterministic quantities and
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the mean values of all random quantities in the formulation and X is the constraint set. The

deterministic feasible space of d subject to g(d) < 0 is F.

min f(ﬂ'DJ Hp, d7 p)
up,d

Constraints with random variables and /or parameters are reformulated such that the prob-
ability of constraint g; violation is less than or equal to an acceptable failure limit P ;. De-
terministic constraints (i.e., constraints that are not functions of any random quantities) are
considered in the probabilistic form as a special case with the failure probabilities P ; being
0. Equality constraints are not implicitly removed using the methods in [56]. This formulation
is commonly referred to as reliability-based design optimization (RBDO) formulation in the

literature [2].

Prlg(D.P) > 0 = [ - [ for(d.p)dddp (3.2
g(D,P)>0

Calculating probabilistic constraints in Eq.(3.1) requires a multiple integration over the failure
domain as shown in Eq.(3.2) where fpp is the joint probability density function (PDF) of all
random uncertainties. However, the lack of joint PDF in most engineering problems and the
difficulty in solving the multiple integration makes Eq.(3.2) impractical. Several methods have
been proposed to improve the efficiency and accuracy of calculating constraint probabilities.
Among them the first and the second order reliability methods (FORM and SORM) are most

commonly used in engineering disciplines [3,57-59].

3.1.2 Activity of Bayesian Reliability Constraints

One of the underlying assumptions of Eq.(3.2) is the availability of the distribution function.
In practice, a proper model of a random uncertain event requires a large amount of data and
a proper selection of distribution type. The cost of generating these data could potentially
be too high for the industry with limited resources and time to production. Therefore albeit
with a large quantity of available literature on probabilistic optimization method, the industrial

applications with actual products are rare.

In this work, instead of assuming distributions for uncertainties, we include uncertainty in
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the form of limited samples. Then we estimate the reliability via Bayesian inference as shown
in Chapter 2. In this case, the RBDO problem becomes RBDO with inadequate uncertainty
data.

The main different between the standard RBDO problems and the RBDO with inadequate
uncertainty data is the evaluation of reliability constraint. Reliability constraint with inade-
quate uncertainty data is evaluated by Bayesian theory. In the section 2.2.4, we illustrated an
example to show how to obtain the reliability distribution from samples. That example also
demonstrated how to estimate reliability of a function with samples. Inadequate uncertainty
data in the form of samples also exist when we develop a new product. We need to consider
the reliability of our product on design stage, however, sometimes the underlying distributions
of uncertain quantities are not available; instead, a few samples are the best we can hope for.
The design problem with samples becomes a reliability-based design optimization with inade-
quate uncertainty data. Reliability constraints in RBDO need to be reformulated to account
for samples. In the following, we will define Bayesian reliability constraint with samples and

then study the activity of this constraint.

In the RBDO community, reliability constraint can be written as
Pr[g < 0] > reliability target (3.3)

Because of the inadequate uncertainty data of parameters, the probability Pr[g < 0], which
referred as reliability, is not a fixed value, instead, it becomes a distribution R about the relia-
bility value. Therefore, the constraint requires that reliability R being larger than a reliability
target R; becomes a probability problem. Since it becomes a probability problem, we define
the confidence range as Equation (2.27). Use the same concept as RBDO, the probability of
reliability larger than the reliability target should reach a target confidence level as confidence

range target C'R;. Then the final constraint formulation becomes

Pr[Prlg <0] > R] > CR, (3.4)

=Pr [R 2 Rt] Z CRt

We define this constraint as Bayesian reliability constraint. In the remaining thesis, we will use
Bayesian reliability constraint instead of Equation (3.3) as the reliability constraint for RBDO

with inadequate uncertainty data.
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Probability density function

Area = Pr[X > d]

Figure 3.1: Equivalence constraint expression in percentile form

A Bayesian reliability constraint includes two probability concepts: (1) In standard opti-
mization, a constraint is defined as active if removing the constraint changes the location of the
optimum. (2) Mostly these active inequality constraints are strictly satisfied as equality when
active. The activity of a Bayesian reliability constraint needs to be defined. Similar concepts
should also apply to Bayesian reliability constraints. Let us look at a simple example of a
random variable X. The constraint is defined as that the probability of X being larger than a
fixed value a should be larger than R; as Figure 3.1

PrlX >a] > R, (3.5)
The equivalent expression is that R; x 100 percentile of X is larger than a:

X(l*Rt)XIOO% >q (36)

x (1-R¢)x100%

¢

When the equivalence is set up, = a, we say this constraint is “ active”.

Using the concept of equivalent probability constraint expression as in Equation (3.6),

Equation (3.4) can also be expressed equivalently as
R(l—CRﬁ)XlOO% Z Rt (37)

We define RUI-CH)x100% 45 Bayesian reliability Rp in the remaining text to help us to use a
fixed value to clarify the relationship between reliability constraint and confidence range and

compare with reliability without inadequate uncertainty data.

We say that when Rp = R;, the constraint is active. However, strictly satisfying as an

equality is only the extends criterion of being an active constraint, we need also check whether
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the removal of a constraint will alter the location of the optimum. The importance of each

constraint will be examined by these two definition of activities in this thesis.

3.1.3 Generalized Optimization Model of RBDO with Inadequate

Uncertainty Data

Before constructing our optimization model, the form of design variables needs to be clarified.
In this thesis, our focus is on uncertainties that could exist in the form distributions or in the
form of available samples. In terms of design framework, uncertainties could be our design
parameters or design variables. However, throughout this thesis, we consider uncertainties in
design variables only be in the form of distributions. That said sample-type uncertainties are

only in parameters.

Design variables are the quantities a designer pick to alter when updating a design. The
values of these design variables change in a design process. Therefore samples taken based on
previous uncertainty design variables can not be used to represent the the design variables that
are about to change. In the literature, Gunawan et al. assumed a fixed Gaussian distribution
with the mean being design variables, as shown in Figure 3.2 [17]; Picheny et al. used the
bootstrap method to obtain a pseudo-distribution about their design variables [16]. Although
they could include uncertainties of samples in design variables, their samples are converted into
distributions of the variables instead of being used to calculate the reliability of the constraints.

On the other hand, our uncertainties of samples in design parameters could better capture the

A Density

translation

Figure 3.2: Schematic diagram about shift mean value of design variables
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true engineering practice of parameters such as Young’s modulus, road irregularity coefficient,
oil density, and etc that we would not to design it but the characteristic of these parameters

would affect the design decision.

In order to help designer use our optimal sampling augmentation process, we define the
generalized model then the designer can utilize our sampling augmentation process easily. The

generalized optimization model can be expressed as

min_ f(pp,,d, Ps, up,, p)

BD,.d

tg=4(dp)<0

gr = Pr[gR(Duv d7 Pu7p> S O] Z Rt
gp = Pr[Pr[g”(Dy,d, Py, P, p) < 0] > R,] > CR,

where
d : deterministic design variables
D, : uncertain design variables known for distributions
p : deterministic parameters
P, : uncertain parameters known for distributions
P, : uncertain parameters known for samples
g : deterministic constraint
gr : reliability constraints that constraint g need to reach reliability target
gp : Bayesian reliability constraints that constraint ¢” need to satisfy the reliability target

and confidence range target

Above model is the generalized reliability-based design optimization with inadequate uncer-
tainty data. We need to classify the uncertainties types into parameters and design variables.
The uncertain variables only exist in form of distributions as previous assertion. And the un-
certain parameters could be classify into known for distributions and samples. The Bayesian
reliability constraint Rp is used to evaluate the reliability with inadequate uncertainty data. If

Bayesian reliability constraint is removed, then the problem becomes RBDO problem.
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3.2 Optimal Sampling Augmentation for Design

In this section, the proposed optimal sampling augmentation process will be illustrated. The

purpose of sampling augmentation will also be explained.

3.2.1 Purpose of Sampling Augmentation

As discussed in Section 2.2.3 that concept of “sample combination” is made more clear and
reasonable in practice than the concept of a set of all uncertainties. We cannot say that two sets
of uncertain quantities with respect to two parameters from different measurement environment
to be a set of samples because we do not know which one sample should be matched to another

one.

As shown in Figure 2.2, with the increase of the number of samples, the confidence levels
inferred will be higher. Therefore, in order to achieve a more creditable inference about an
uncertainty, sample size need to reach a certain level. However, the resources to provide infor-
mation about the uncertainties is limited. An effective reliability inference and optimization
scheme should be provided under this limited situation. In existing research, the differentia-
tions between the importance and cost associated with each uncertainty cannot be revealed
due to the fact that samples exist in a group, rather than appear individually. As a result, we
can not measure one uncertain parameter to increase number of samples when inferring the
population. All uncertainties need to be measured. However, in our opinion, samples appear

¢

individually, resulting in “ sample combination ”. One measurement means one sample. Each
samples is combined to form a set of sample combinations. The set of all possible uncertainty
could also be obtained by the concept of sample combination. Therefore, we can compare the

importance of each uncertainties.

The additional measurements can only be given on the critical uncertainties instead of
measuring a set of whole uncertainties. We propose a sampling augmentation process that add
samples based on their importance to reduce the cost of uncertainty measurements. Redundant
measurements, the samples that do not add value in population inference, can be avoided.

Resource can be allocated much more efficiently and effectively.

35



3.2.2 Sampling Augmentation Process

In our proposed approach, Bayesian binomial inference is used to obtain the reliability distribu-
tion with inadequate uncertainty data. Biased samples are filtered via MCMC with bootstrap.
Figure 3.3 illustrates the flowchart of the proposed approach in dealing with uncertainties that
are available as either samples or distributions. At the beginning, a reliability target for each
constraint is given. An acceptable confidence range target is also given for Bayesian reliability

constraints. The first major step in the flowchart is to identify two types of uncertainties,
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Confidence Target

Uncertainty Models
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Confidence

Optimization >
reach target?

Model Update Terminate

No

Data with
Known
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Inad " Sample
nadequate
Uncertainty  }<& Measurements: | | Resource Allocation Process
Data MCMC for Sample
Filtering

Figure 3.3: Flowchart of proposed sampling augmentation for design

namely the inadequate uncertainty data and the data with known distributions. We only con-
sider uncertain design variables in the form of distributions. Uncertain parameters could be in

distributions and in samples.

Optimization Model Update with Confidence Bound

Because the confidence bound will be updated with the increment of sample combinations,

which is defined as confidence bound limit (CBL), the generalized optimization model demon-
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strate in Section 3.1.3 is changed with confidence bound limit as the following :

min  f(up,,d,Ps, Py, p)

up,.d
st gi=g'(d,p) <0
gr = Pr[gR(Dua d7 Pu> p) S O] Z Rt

gp = Pr [Pr[¢”(Dy,d, Py, Py, p) <0] > R > CB

where the generalized optimization model alters with the change of confidence bound (C'B). As
shown in Section 2.2.2, the confidence range of a Bayesian reliability estimation is limited by the
number of sample combinations. Therefore, after clarifying the uncertainties, we then evaluate
the confidence bound of this number of sample combinations. This confidence bound is the
maximal confidence range with the reliability target provided given existing number of sample
combinations. The initial confidence bound is defined by the extreme state current samples
could achieve. However, this extreme situation of confidence bound restricts the feasibility of
constraint in optimization. If designers believe that the extreme situation of confidence bound
would affect the feasibility of constraints, a certain degree of discount (D;) on confidence bound

is permitted. Then the discounted confidence bound (C'B) is expressed as
CB = Dg(1 — ®Ppeta( R, Ne + 1, 1)) (3.10)

where Dy = 1 means there is no relaxation on Bayesian reliability constraint. The relaxation
means that we first allow the Bayesian reliability constraint could not achieve the confidence
bound but give a quite closer design point. The relaxation level on Bayesian reliability constraint
is decided by designer. With the sampling augmentation, the confidence bound limit would
update with the increment of number of sample combinations. However, if previous sampling
augmentation iteration obtained an infeasible design, the confidence bound limit would not be

updated with the increment of number of sample combinations.

There is one thing needs to be noticed that the confidence bound limit becomes nearly
100% with large number of sample combinations. In other words, the optimum should satisfy a
high confidence level (say 99.9%) to provide Bayesian reliability larger than the target reliability

value with large sample combinations.
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MCMC for Sample Filtering

In practical engineering applications, limited samples are used to infer the population about an
uncertainty. Although increasing sample size will improve the inference results, the accuracy of
reliability estimation would also be affected by the quality of the measurements. Highly biased
undesirable measurements would increase the number of design iterations required. A filter

mechanism that effectively removes biased samples is necessary.

The proposed method filter mechanism includes : an MCMC of accepting the current sam-
ple and MCMC of accepting an additional sample. The MCMC can be divided into two parts :
One part is the probability distributions, as shown in Figure 3.4, about the target distribution
and proposal distribution. In order to give the filter judgment on the same standard, this
two probability distributions are obtained from the initial samples. Another part is Markov
chain Monte Carlo filtering. This part is used to examine the acceptance of additional samples.
These two filter are shown in Figure 3.5. Figure 3.5(a) is about the filter mechanism of MCMC
of accepting the current sample and Figure 3.5(b) is about the filter mechanism of MCMC of
accepting an additional sample. These two filter mechanism will be used to filter out the biased

samples. The detailed descriptions are as shown in Section 2.3.3.
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Figure 3.4: MCMC previous stage: probability distribution
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Figure 3.5: Two MCMC filtering mechanism

Algorithmic Steps of Sampling Augmentation for Design

Updating of the optimization model with confidence bound limit is the major steps in Figure
3.3. The flowchart of general sampling augmentation is as shown in Figure 3.3. The first step is
to provide a reliability target, and an acceptable confidence range target for each constraint with
uncertainties. Then, classify the uncertainties into the inadequate uncertainty data (samples)
and data with known distributions. As shown in Section 2.2.3, we use the sample combinations
to infer reliability distribution, therefore, we evaluate the number of sample combinations of
these inadequate uncertainty data. Because the confidence range of a Bayesian reliability
estimation is limited by the number of sample combinations, we use the confidence bound

limit instead of confidence range target in the optimization model. Therefore, we evaluate and
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update the confidence bound limit of this number of sample combination in the optimization
model. Then performing the reliability-based design optimization with inadequate uncertainty
data to help us to find a better design under this number of sample combination. If there is
feasible solution exists, then we check that whether the confidence range target is reached, the
sampling augmentation will be terminated, if not, then we do resource allocation to find an
important uncertainty. If there is no feasible solution exists, execute the resource allocation
to give an important uncertainty. The detailed description about the resource allocation will
be introduced in next section. Then we take an additional sample measurement then filter
out the biased sample via MCMC sample data filter as Section 2.3.3 and 2.3.3 shown. The
sampling augmentation will be terminated when the optimum’s confidence range satisfying the
confidence range target, otherwise, the process will continued to iterate. The general sampling

augmentation can be expressed in algorithmic form as following :
Step 1 Provide the reliability target value of each constraint with uncertainties. And the
confidence range target of Bayesian reliability constraint is also given.

Step 2 Classify the uncertainties into inadequate uncertainty data and data known for distri-

butions. Evaluate the number of sample combinations of inadequate uncertainty data.

Step 3 Evaluate and update the confidence bound limit of this number of sample combinations
and update the optimization model. Perform reliability-based design optimization with

inadequate uncertainty data.
Step 4 Examine the existence of feasible solution.

e Feasible solutions exist : Examine the confidence range of this feasible design with
confidence range target. If the confidence range target is reached, then the sampling

augmentation process terminate, otherwise, go to step 5.

e No feasible solutions exist : Go to step 5.
Step 5 Execute the resource allocation to give an important uncertainty. Go to step 6.
Step 6 Give an additional sample measurement and filter the biased sample. Go to step 7.

Step 7 The sampling augmentation process for design terminates when the optimal solution

satisfying the confidence range target, otherwise, the process would continued iterates.
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3.3 Resource Allocation Process

Measurements of samples can be costly. Unnecessary redundant measurements can be avoided
by deliberated casting samples only when they are important. In Section 3.2, sampling augmen-
tation and separating of each uncertainty help reducing the number of measurements required.
Once additional sample are inevitable, in this work, measurements of uncertainties are added
only when they are “ important”. Additional measurements on critical constraints with respect
to uncertainties in the form of discrete sample are necessary. In what follows, two techniques
of critically adding samples will be introduced. The proposed resource allocation scheme would

then be illustrated.

3.3.1 Sensitivity Analysis

The constraint with the lowest confidence range in the generalized optimization model is the
critical constraint. With this critical constraint, the sensitivity analysis is used to decide which

uncertain parameter is the most important one with highest sensitivity.

Sensitivity analysis assesses the impacts in the change of a certain parameter on the overall
system. Additional measurements would be given on critical constraints with respect to the
most important uncertain parameters. However, critical constraints usually have more than
one uncertain parameter. Therefore, we use sensitivity analysis to help us making decisions on

which parameters are the key drivers of the critical constraints.

Let a constraint be g, with respect to two parameters y, and z. The sensitivity of g with
respect to each parameter value is the derivative with respect to each parameter. Define the

sensitivity at the value of (g, Z) as

dg
sy =| 9 |y=5
Y (3.11)
_, 99
Sz _l % |z—z

where s, is defined as sensitivity of parameter y, same as s,. In this thesis, we evaluate the

sensitivity of an uncertainty at the mean as its sensitivity to the function g.
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3.3.2 Scheme of Resource Allocation

With proposed methods of sensitivity and MCMC for sample filtering, the overall resource
allocation scheme is as shown in Figure 3.6. The sensitivity analysis is used to decide which
uncertain parameter is more important when the critical constraint with respect to more than

one uncertain parameters.
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Only one Ps of
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sampled in previous

iteration

Sensitivity Analysis

\4

The highest
sensitivity parameter

Important Uncertainty

scheme.pdf

Figure 3.6: Flowchart of resource allocation scheme

First, we capture the constraint with lowest confidence range in generalized optimization
model as the critical constraint. And we check if there is only one uncertain parameter known for
samples (Pg) with respect to the critical constraint. If there are only one uncertain parameter

with respect to the critical constraint, we recognize this parameter is the only influential uncer-
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tain quantities, then regard this uncertainty as important uncertainty. Otherwise, if there are
more than one uncertain parameters known for samples with respect to the critical constraint,
we first check if the same uncertain parameter be draw in previous sampling augmentation iter-
ation. If the same critical uncertain parameter exists, we make the assertion that this uncertain
parameter is quite influential so we must give more measurement to help us make inference.
On the contrary, if there is no same drawn uncertain parameter, the sensitivity analysis is used
to decide which uncertain parameter is the most importance one with the highest sensitivity.
When the important uncertain parameter with respect to the critical constraint is decided, the

resource allocation process terminates.

The algorithmic form of resource allocation is provided as following:

Step 1 Identify the constraint with the lowest confidence range as critical constraint.

Step 2 Examine if there is only one uncertain parameter known for samples with respect to

the critical constraint, if yes, then turn to step 5, otherwise to step 3.

Step 3 Check if the same uncertain parameter has with respect to the critical constraint, then

turn to step 5, else turn to step 4.

Step 4 Perform sensitivity analysis to find which uncertain parameters with the highest sen-

sitivity, then go to step 5.

Step 5 Set the obtained uncertain parameter as important uncertainty.
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Chapter 4 Case Studies in Single Level

Systems

Two case studies are used to show the effectiveness of the proposed approach in Chapter 3,
which uses inadequate samples to assist reliability-based design. The optimization is solved by
fmincon solver (sequential quadratic programming) in commercial tool Matlab. In this section,
we focus on problems that is formulated as an all-in-one system. In Chapter 5, we will extend
the concept to hierarchical complex problems. An all-in-one system is one where all objectives
and constraints are handled in a single problem. Following, a mathematical example and passive
vehicle suspension design are used to demonstrate the proposed approach in Section 4.1 and

4.2.

4.1 A Mathematical Example

A mathematical problem is used in this section to show the overall approach proposed. In com-
parison, we also study the same problem with different uncertainty levels, namely, deterministic
problem with no uncertainty, RBDO problem with uncertainties known for distributions and
RBDO problem with inadequate uncertainty data (uncertainties known for samples). The op-
timal results of these three design problems will be compared in following section. The optimal
sampling augmentation for RBDO with inadequate uncertainty data will be demonstrated with
three situations of different MCM filter mechanisms as without MCMC, MCMC of accepting
current sample and MCMC of accepting an additional sample. These three types of sampling

augmentation are compared with different sample size in Section 4.1.3
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4.1.1 Optimization Model of Mathematical Example

Deterministic Optimization Model

H{Tinf =z
st.gr=1—2ap?/20<0
g=1—(z+p —5)?/30<0
g3 =1—80/(p} +8ps — 6.5) <0 (4.1)
gs=1— (zpy +p3)/20 <0

gs=1—(z+p1+p2—6)°/30— (—x+p; —py — 11)%/120 < 0

6.5 <x<8
where parameters p; = —8.2 and py = 2.2.
RBDO Model
min f = x

st. g1 = Pr[l —2P1%/20 < 0] > R,
go=Pr[l — (x +P; —5)*/30 < 0] > R,
g3 = Pr[1 —80/(P1* + 8Py — 6.5) < 0] > R,
g1 = Pr[l — (zP5 + P5%)/20 < 0] > R, (4.2)
gs =Pr[l — (x + Py + Py —6)*/30 — (—z + Py — Py — 11)?/120 < 0] > R,
6.5<z<8
Py ~ N(—8.2,0.08?)
P, ~ N(2.2,0.022)

where

The reliability target is given as R; = 0.85.
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RBDO Model with Inadequate Uncertainty Data

mxinf =x

s.t. g1 = Pr[Pr[l — 2P1?/20 < 0] > R] > CB

g2 = Pr[Pr[l — (z + P, —5)?/30 < 0] > R] > CB

gs = Pr[Pr[1 — 80/(P1® + 8Py — 6.5) < 0] > R, > CB (4.3)

g1 = Pr[Pr[l — (2P + P2%)/20 < 0] > R,] > CB

gs = Pr[Pr[l — (z + Py + Py — 6)?/30 — (—x + Py — Py, — 11)?/120 < 0] > R,] > CB

6.5 <x <8
The confidence bound (C'B) will be updated with the increment of samples. The reliability
target is given as Ry = 0.85. The confidence range target is given as C'R; = 0.9. The constraints’
confidence bound limit of optimum must satisfy the confidence range target. The initial number

of samples of each inadequate uncertainty data is five. The initial samples are given in Table

4.1. Table 4.2 shows the relationship between parameters in form of samples and constraints.

Table 4.1: 10 available initial data of Py and P in Equation (4.3)

P, P,
-8.26284520912262  2.20222327815620
-8.29582956598186  2.17863273276113
-8.30545622577585  2.19175031781491
-8.24754085360083  2.22269605270197
-8.13573721029070  2.16495104270072

Table 4.2: Parameters respect to the constraints of the mathematical example

g1 92 93 Ggs4 Gs
P,V v Vv v

P, v vV
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4.1.2 Optimal Results and Discussions

The results of deterministic design, RBDO, and RBDO with inadequate uncertainty data would
be compared. We will use Monte Carlo Simulation to acquire the reliability value of the optimal
points, which referred as MCS reliability ( denoted as Rycs) to represent as true reliability.
About the RBDO with inadequate uncertainty data, the Bayesian reliability Rp defined in

Section 3.1.2 is used to represent the estimation value of the reliability distribution.

With intuitive, the lack of information would make the optimal results become conser-
vative. Therefore, RBDO with inadequate uncertainty data should be the most conservative
one, then RBDO be the second one and deterministic design be the last one. Table 4.3 shows
the comparison of deterministic, RBDO, and RBDO with inadequate uncertainty data. The
deduction could be proved in Table 4.3. The RBDO with inadequate uncertainty data is indeed
the most conservative one about the function value f in accordance of intuitive. In proposed
sampling augmentation process, the resource allocation is considered by the critical constraint.
As Table 4.3 show, the constraints g3 and g4 might be the critical constraints due to the lower
reliability on RBDO optimum. As the result of MCMC of accepting current sample, the con-
straint g3 is indeed the critical constraint. And the optimum of sampling augmentation with
MCMC is quite close to the optimum of RBDO. The estimation of reliability by samples is
denoted as Bayesian reliability Rp. Table 4.3 shows that the Bayesian reliability Rp is quite
close to the MCS reliability Rp;cs. Therefore, we can say that the sampling augmentation

process help us to use critically limited samples to obtain the credible reliability-based design.

Table 4.3: Comparison the results between RBDO, deterministic, and MCMC of mathematical

example
Sampling Augmentation (accepting | RBDO Deterministic
current sample)
Topt 6.565137 6.5 6.5
f 6.565137 6.5 6.5
Rp (0.960, 0.960, 0.862, 0.960, 0.960)
(1,1,0.894,0.869,1) | (1,1,0.894,0.869,1)
Ryes (1,1,0.894,0.961,1)
Active constraint | g3 None None
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In Section 2.3.3, two types of MCMC filter mechanisms are proposed. The difference
between these two filters is that when a new sample is rejected, one replicate the previous sample
as a new one which the other one take a completely new measurement sample. Therefore, we
have three scenarios in our study. Scenario 1 is sampling augmentation with MCMC of accepting
current sample which means that when rejected sample occurs, the current sample be accepted
as an additional sample. Scenario 2 is sampling augmentation with MCMC of accepting an
additional sample which means that when rejected sample occurs, the filter mechanism will
continue still an acceptable samples appear. Scenario 3 is sampling augmentation without
MCMC filter mechanism. In the following, these three scenarios would be compared to show
the effectiveness of MCMC filter. The comparison of these three scenarios is shown in Table

4.4.

Table 4.4: Comparison optimal results of three types of sampling augmentation of mathematical

example
Scenario 1 Scenario 2 Scenario 3
Topt 6.565137 6.565130 6.565139
f 6.565137 6.565130 6.565139
Rp (0.96,0.96,0.86,0.96,0.96) (0.96,0.96,0.86,0.96,0.96) (0.96,0.96,0.85,0.96,0.96)
Ryes (1,1,0.894,0.961,1) (1,1,0.894,0.961,1) (1,1,0.894,0.961,1)
Confidence range (1,1,0.937,1,1) (1,1,0.937,1,1) (1,1,0.911,1,1)
Adding procedure 6 on P, 6 on P;(actually 8 samples) 7on Py
No.rejected sample 2 2 N/A
No. combination 55 25 60
Active constraint g3 g3 g3

Different sampling augmentation scheme obtain similar optimal results. Both the reliability
estimation (Rp) and confidence range(C R) reach the target. The estimation of reliability (Rp)
of three scenarios are quite close to Rjy;¢g reliability of overall constraints. Under this situation,
we can say that Bayesian binomial inference provide a credible estimation about the reliability
distribution. Both sampling augmentation with MCMC filter mechanism reject two biased
samples and use 6 additional samples on Py in optimization model. The overall sample size

of scenarios 2 is 8 (6+2) samples. As shown in Table 4.4, number of sample combinations of
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both two sampling augmentation with MCMC (scenario 1 and 2) is less than of which without
MCMC (scenario 3). Sampling augmentation without MCMC obtain the optimum requires

more sampling iterations.

Confidence range is the likelihood probability of the estimation of reliability distribution
being greater than a reliability target which is limited by the number of sample combinations.
Figure 4.1 shows the confidence range of constraints g;. With increment of number of sample
combinations, the confidence should be increased. However, biased samples could undermine
the confidence range value without MCMC. The 4th iteration in Figure4.1 comparing with
and without MCMC shows a big difference in confidence range calculation. The biased sample
would also baffle the search of the optimal point. Overall, biased samples affect the convergency
of the RBDO with inadequate uncertainty data. From the results, the MCMC filter mechanism
could assist the convergent rate of sampling augmentation for design as Figure 4.1 shown and

use fewer samples to inference the reliability distribution.

o e
= )

Confidence range
N
™

| —— w/ MCMC(accepting the current sample)
—— w/ MCMC(accepting an additional sample)
—e— w/o MCMC

<
o

0 2 4 6 8
Iterations

Figure 4.1: Confidence range of g3 of iterations
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4.1.3 Comparison of Sampling Augmentation with Different Sample

Size

The effect of MCMC filter mechanism on the same number of additional samples will be demon-
strated in this section. Bayesian reliability values and corresponding confidence ranges on the
critical constraint gs with different sample size in the mathematical example in Equation (4.3)
will be studied. The number of rejected samples is also taken into account as the number of
additional samples. Figure 4.2 shows the comparison of MCMC of accepting current sample,

MCMC of accepting an additional sample and without MCMC on optimal point of RBDO.

As shown in Figure 4.2(a), we can see the confidence range of g3 without MCMC fluctuates
up and down due to the effects of biased samples. Biased sample makes the confidence range
of g3 without MCMC unstable. Search directions in optimization also become inconsistent due
to the fluctuations of confidence ranges. Then the convergency of optimization becomes slow.
From the results, we can assert that the variation of confidence range value would make the
search of optimum become difficult. The Bayesian reliability of g3 without MCMC would no
longer larger than reliability target (R; = 0.85) due to the biased samples as shown in Figure
4.2(b). Therefore, we assert that both MCMC filter mechanisms would assist the effect to avoid

biased samples and improve the convergency of optimization.
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—&— w/ MCMC(accepting an additional sample) 4w/ MCMC(accepting an additional sample)
—e—w/ MCMC(accepting the current sample) 0 —&— w/ MCMC(accepting current sample)
9[0 60 110 160 210 260 300 10 60 110 N 160 210 260 300
No. additional samples No. additional samples
(a) Confidence range of g3 (b) Bayesian reliability of g3

Figure 4.2: Comparison three sampling augmentation process with different sample size on

RBDO optimal point
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4.2 Passive Vehicle Suspension Design

In this section, a passive vehicle suspension design is used to show the overall approach pro-
posed. we will construct the optimization models about passive vehicle suspension design. In
comparison, we also study the same problem with different uncertainty levels, namely, determin-
istic problem with no uncertainty, RBDO problem with uncertainties known for distributions
and RBDO problem with inadequate uncertainty data (uncertainties known for samples). The
optimal results of these three design problems will be compared in following section. The opti-
mal sampling augmentation for RBDO with inadequate uncertainty data will be demonstrated
with three situations of different MCM filter mechanisms as without MCMC, MCMC of ac-
cepting current sample and MCMC of accepting an additional sample. These three types of

sampling augmentation are compared with different sample size in Section 4.2.3.

4.2.1 Optimization Model of Passive Vehicle Suspension Design

The optimal design of a passive vehicle suspension, shown in Figure 4.3, is studied following
Lu et al. [60]. The objective is to minimize the mean square value of the vertical vibration
acceleration of the vehicle body, which satisfies the following constraints: a lower bound on the
road-holding ability of the vehicle (g1); an upper bound on the rolling angle (g2); a lower bound
on the suspension’s dynamic displacement to avoid bumper hitting, the so-called rattle-space
constraint (g3); and a lower bound on tire stiffness because tire life is an increasing function of

tire stiffness (ga).

Suspension stiffness ¢ (kg/cm), tire stiffness ¢, (kg/cm) , and damping coefficient £ (kg/cm/sec)

are the design variables. The problem parameters are provided in Table 4.5.

In comparison, we study the same problem with different uncertainty levels, namely, deter-
ministic problem with no uncertainty, RBDO problem with uncertainties known for distribu-
tions and RBDO problem with inadequate uncertainty data (uncertainties known for samples).

Following, we construct the optimization models for these three design problems.
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Figure 4.3: Passive vehicle suspension
Deterministic Optimization Model

min Z2 = (rAV/m?)(cek + (M +m)ck ™)

c,cp .k

s.t.
TAVm Ck c\* 2 cipk?

g1 = -] + +
bog?k M+m M Mm — mM?

g2 = 7.6394(4000(Mg) *Pc—1) -1 <0

g5 = 0.5(Mg)"?(KPepe™ " (M +m) " +¢)72 —1<0

g1=((M+m)g)** ¢! —1<0
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Table 4.5: Suspension problem parameters

Dynamic load coefficient, b 0.27
Vehicle velocity, V' (m/s) 10
Gravity acceleration, g (cm/s?) 981

Road irregularity coefficient, A (cm? cycle/m) | 1

Sprung mass, M (kg/cm/s?) 3.2

Unsprung mass, m (kg/cm/s?) 0.8

RBDO Model

min 22 — (TAV/m?)(cxk + (M + m)c*k™)

c,cp .k
A 2 2 2
TAVm - 4 c £ cLk 1<0
bog?k M+m M Mm mM?

g2 = Pr[7.6394(4000(Mg) "¢ —1) =1 < 0] > R,

s.t.

g1 = Pr

g3 = Pr[0.5(Mg)"?(K*crc " (M +m) ™ +¢)72 -1 <0] > R,
g1 = Pr[(M +m)g)** ¢! =1 < 0] > Ry

The reliability target is given as R, = 0.9. The road irregularity A, sprung mass M and
unsprung mass m are set to be uncertain parameters. The distributions are followed Normal

distribution as
A~ N(1, 0.032)

where M ~ N(3.2,0.03?)
m ~ N(0.8,0.0052)
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RBDO Model with Inadequate Uncertainty Data

min 72 = (7 AV/m2)(cxk + (M + m)c2k ™)

cycpyk

s.t.

g1 = Pr [Pr

TAVm Ck c\? c? cpk?
S o) ) 1<
bog?k M+m M Mm mM?

g2 = Pr[Pr[7.6394(4000(Mg) '5c —1) -1 < 0] > R] > OB

g3 = Pr[Pr[0.5(Mg)Y?(K*cee ' (M +m) " + )72 -1 <0] > R] > CB

g4 = Pr[Pr[(M + m)g)o'gwclg1 —-1<0/>R]>CB
The road irregularity A, sprung mass M and unsprung mass m are set to be uncertain param-
eters of samples. The confidence bound (C'B) will be updated with the increment of samples.
The reliability target is given as R; = 0.9. The confidence range target is given as CR; = 0.9.
The constraints’ confidence bound limit of optimum must satisfy the confidence range tar-
get. The initial number of samples of each inadequate uncertainty data is five. The origin
samples are given in Table 4.6. Table 4.7 shows the relationship between parameters in form

of samples and constraints.

Table 4.6: 15 samples as initial uncertainty data of passive vehicle suspension design in Equation

(4.6)

A M m
1.02021096089625  3.18716771531861 0.806528115517652
0.979926610138818  3.18261880578225 0.804919847656519
0.987990318980960 3.22777905144734 0.793743068217506
0.979845927183428  3.20016531224747 0.799101231046973
1.01726887049749  3.18096527441576 0.796282967758515

4.2.2 Optimization Result and Discussions

The results of deterministic design, RBDO, and RBDO with inadequate uncertainty data would

be compared. We will use Monte Carlo Simulation to acquire the reliability value of the optimal
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Table 4.7: Parameters respect to the constraints of the passive vehicle suspension design

g 92 g3 G4
AV
M|v v Vv V
m | v v v

points, which referred as MCS reliability ( denoted as Rycg) to represent as true reliability.
About the RBDO with inadequate uncertainty data, the Bayesian reliability Rp defined in

section 3.1.2 is used to represent the estimation value of the reliability distribution.

Table 4.8 shows the comparison of deterministic, RBDO, RBDO with inadequate uncer-
tainty data. Deterministic design is assumed that there are no uncertainties, the optimum
should be more affirmatory than which with uncertainties. RBDO with inadequate uncertainty
data would be the most conservative of these three design optimization problem. Because the
reliability in RBDO with inadequate uncertainty data is also a uncertain quantities, the reli-
ability estimation should confirm certain degree of confidence level (which means confidence
range in this thesis). In order to confirm the confidence range of reliability distribution, the
optimum becomes conservative in RBDO with inadequate uncertainty data. As shown in Ta-
ble 4.8, the RBDO with inadequate uncertainty data is the most conservative one about the
mean square value of the vertical vibration acceleration Z_ 2. Although RBDO with inadequate
uncertainty data is the most conservative one, it still gives a optimal value closer to which
of RBDO. In practical engineering community, the characteristics of underlying distribution
cannot be known, what we can do is that only draw samples from population and infer the
underlying distribution. We use 10° pseudo-samples to simulate the underlying distribution in
RBDO problem. If we want to assume the underlying distribution well-known, we must draw
105 samples from population. However, measuring samples is costly, the resources to provide
information about the uncertainties is limited. Optimal sampling augmentation with MCMC
of accepting current sample only uses 20 samples(number of initial samples = 15, number of
additional samples =5) to provide an acceptable optimal results. Summarizing, sampling aug-
mentation process help us to use a small amount of samples to give a creditable reliability-base

design.
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Table 4.8: Comparison the results between RBDO, deterministic, and MCMC of Passive Vehicle

Suspension Design Optimization

Sampling Augmentation | RBDO Deterministic

(accepting current sample)

le, ¢k, Klopt 393.2, 1437, 20.97] 386.5,1469,20.77] | [379.8,1426,20.77]
7 2915154 2911614 2819585
Rp (0.991,0.991, 0.963, 0.963)
(0.997,0.997,0.906,1) | (0.984,1,0.0625,1)
Rucs (1,1,0.874,0.899)
Confidence range | (1,1,1,1) N/A N/A
Adding procedure | 5 on M N/A N/A
No.rejected sample | 2 N/A N/A
No. combination | 250 N/A N/A
Active constraint | g3, g4 g3 92, 93, g4

In Section 2.3.3, two types of MCMC filter mechanisms are proposed. The difference
between these two filters is that when a new sample is rejected, one replicate the previous sample
as a new one which the other one take a completely new measurement sample. Therefore, we
have three scenarios in our study. Scenario 1 is sampling augmentation with MCMC of accepting
current sample which means that when rejected sample occurs, the current sample be accepted
as an additional sample. Scenario 2 is sampling augmentation with MCMC of accepting an
additional sample which means that when rejected sample occurs, the filter mechanism will
continue still an acceptable samples appear. Scenario 3 is sampling augmentation without
MCMC filter mechanism. In the following, these three scenarios would be compared to show
the effectiveness of MCMC filter. The comparison of these three scenarios is shown in Table

4.9.

As Section 4.1.3 shwon, we assert that the MCMC filter would help the convergent rate
of optimization. Sampling augmentation without MCMC cannot give a feasible solution by
50 additional samples as Table 4.9 shown. Because the biased samples would let the Bayesian
reliability constraint become unstable, the confidence range of reliability distribution would
fluctuate due to biased samples. MCMC filter provides a stable confidence range of reliability

estimation by filtering biased samples, it makes the searching direction would not be affected
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Table 4.9: Comparison optimal results of three types of sampling augmentation of Passive

Vehicle Suspension Design

Scenario 1 Scenario 2 Scenario 3
¢, ¢k, Kopt [393.2,1437,20.97] [393.2,1437,20.97]
72 2915154 2915154
Rp (0.991,0.991,0.963,0.963) | (0.991,0.991,0.963,0.963)
Rycs (1,1,0.874,0.899) (1,1,0.874,0.899)
Confidence range (1,1,1,1) (1,1,1,1) Diverge by 50 samples
Adding procedure 5on M 5 on M(actually 9 samples)
No.rejected sample 2 4
No. combination 250 250
Active constraint 93, G4 g3, G4

by fluctuated confidence range values in optimization.

Scenario 1 and 2 give the same feasible solutions. Scenario 1 and 2 use five additional
samples, but actually scenario 2 uses nine samples. Scenario 2 rejects two more samples than
which of scenario 1. Actually, scenario 1 replicate the previous sample as a new one when a
new sample is rejected. We can see that scenario 1 use fewer samples than which scenario 2
uses. Therefore, it is made the assertion that sampling augmentation with MCMC of accepting
current sample (scenario 1) is the best one in three sampling augmentation processes on the

aspect of amount of samples.

4.2.3 Comparison of MCMC and without MCMUC in Passive Vehicle

Suspension Design with different sample size

The effect of MCMC filter mechanism on the same number of additional samples will be demon-
strated in this section. Bayesian reliability values and corresponding confidence ranges on the
critical constraint gs with different sample size in the mathematical example in Equation (4.6)
will be studied. The number of rejected samples is also taken into account as the number of

additional samples. Figure 4.4 shows the comparison of MCMC of accepting current sample,
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MCMC of accepting an additional sample and without MCMC on optimal point of RBDO
in Table 4.9. Figure 4.5 shows the comparison on optimum of sampling augmentation with

MCMC filter in Table 4.9.
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Figure 4.4: Comparison three sampling augmentation process with different sample size on

RBDO optimal point
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Figure 4.5: Comparison three sampling augmentation process with different sample size on

MCMC (accept as current) optimal point

As shown in Figure 4.4(a) and 4.5(a), we can see the confidence range of g3 without MCMC
are almost near 0 that means there are no probability to get reliability higher than 90%. As
shown in Figure 4.4(b) and 4.5(b), we can see the reliability of g3 without MCMC fluctuates due
to the effects of biased samples. The variation of constraint value would make the direction of
searching optimum always changed in different iterations. Then the convergency of optimization

becomes slow or divergent. As Figure 4.4 and 4.5 shown, both two MCMC filters have higher
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stability than which without MCMC. Therefore, we can make assertion that the MCMC filter
mechanisms give the assist to sampling augmentation to avoid biased samples and improve the

convergency of optimization.

4.3 Summary

We measure additional samples to help us to comprehend the importance of different uncer-
tainties by sampling augmentation during optimal iterations. Therefore, we can only use lower
fund to obtain the measurements of samples. Measurement is expensive, so resource alloca-
tion is necessary. We only measure additional samples when the corresponding uncertainty
is important. However, measurements sometimes will go wrong, the filter mechanism MCMC
is used to avoid higher biased samples. In this two case studies, the sampling augmentation
with MCMC provides a creditable optimum which is quite closer to the optimum of RBDO by
limited samples. Both two filter mechanisms give significant effect on filtering out biased sam-
ples, which assisting the convergency of optimization. The reliability estimation by Bayesian
binomial inference is quite close to the MCS reliability, we can assert that the concept of sam-
ple combinations help us to reveal all possible situations that each sample be matched. We
also examine the influence of biased samples by comparing the filter mechanism with different
sample size. We see the phenomena that the biased samples would affect the consistency of
constraint values. Use the filter mechanism MCMC let us avoid the inconsistency of constraint

values then refrain the divergency of optimization.
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Chapter 5 Case Studies in Complex
Multilevel System

Design problem is always solved by the all-in-one (AiO) strategy that consider the overall design
all together. However, design of modern engineering product becomes a complex system design
problem. Furthermore, in practical engineering community, no single group could handle a
complex design problem. The designers are always distributed over different design groups that
independently make the proper design decisions [61]. The reliability design with inadequate
uncertainty data is also existing in complex systems. In order to confirm that the proposed
sampling augmentation and resource allocation for design can also be applied to the complex
system design, we would demonstrate passive vehicle design same as in Section 4.2 with the

introduction of design details of spring and damper.

5.1 Introduction to Analytical Target Cascading

The complex system design can be solved using decomposition strategies. The original AiO
problem is partitioned into several subproblems. The goal of these strategies is to obtain the
same solution as which with AiO formulations. Many different strategies are proposed such as
Optimization by Linear Decomposition (OLD) [62], Quasi-separable Subsystem Decomposition
(QSD) [63], Bi-Level Integrated Synthesis (BLISS) [64] and Collaborative Optimization (CO)
[65]. Such methods are collectively referred to as multidisciplinary design optimization (MOD)
methods. Another famous method to solve the complex design problem is Analytical Target

Cascading (ATC) [66]. In this work, we will focus on analytical target cascading method.

Analytical target cascading is a model-based, multi-level, hierarchical optimization method
for system design. Design targets from higher level subproblems are cascaded down to the lower
level subproblems. ATC provides the multi-level formulation. Several variants of ATC have
been proposed, we will focus on one type of these variants. First, the decomposition procedure
for ATC is presented. Then the selected variant of ATC, augmented Lagrangian method for
ATC [67] is presented.
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5.1.1 ATC Problem Decomposition

ATC strategy provides a hierarchic multi-level formulation of the complex optimization prob-
lem. ATC formalizes the process of propagating top-level targets throughout the design hierar-
chy. An all-in-one design problem can be decomposed into several element as Figure 5.1. The
top-level element handle the overall system design and each lower level elements are presented
a subsystem or a component of its parent element. The elements are coupled by response vari-
ables and targets from parent. The optimization model of a subsystem is formulated by the
local variables, response variables to parent, and targets to children which can minimize the
inconsistency of response variables. The response variables would be iteratively rebalanced up

to higher level element to achieve the consistency.

Element j

----- Py

e

Llevel § =—=======----

T

Figure 5.1: Scheme of hierarchic structure

The mathematical definition of the j-th subproblem at the i-level, namely, subsystem F;;
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From parent To parent
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Subproblem
P;
Input x5 : local variables Output
f ij : local objective
Gij» hij - local constraints
\ J
i+1 i
"(i+1)j tliv);
From children To children

Figure 5.2: Subproblem flow in the ATC formulation

in Figure 5.2, is defined as follows.
m}gn(fij(iz‘j) Ly Htijl - I'ng g ||téi+1)j — réﬂl)]‘m
subject to
9ij(Xi5) <0

hij(%ij) =0

(5.1)

where

- i e
Xij = [Xij L t(i+1)j]

Here tﬁj_l are the targets coming from the parent subproblem at level 7 — 1, rﬁj are the
responses to be sent to the parent subproblem, té i41); Are the targets to the children subproblems

and r’é:}l)j are the responses from the children subproblems. The linking variables tﬁj_l and

rzjjl)j from parent and children, respectively, are considered as parameters in the subproblem

B,

j.
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5.1.2 Augmented Lagrangian Method for ATC

In previous section, the mathematical model of ATC strategy is presented. Tosserams et al. [67]
propose the augmented Lagrangian method to improve the convergent rate of the ATC strategy.

This method use the augmented Lagrangian penalty function map, as Equation (5.2)

maL = Vi (ry; — 1) + |lwig o (r; — ri7 I3 (5.2)

where the v;; is a vector of Lagrangian multiplier parameters, the w;; is a vector of penalty
weights and the o symbol is used to denote a term-by-term multiplication of vectors such that

[a1,ag, ... a0 b1, bay ... by] = [a1by, aghs, ..., a,by,].
Then Equation (5.1) becomes as following
min( fy;(x;) + 7ar)
subject to
9i3(%;5) < 0

hij(Xij) = 0

(5.3)
where
Xij =[xy rij téi—i—l)j]

The augmented Lagrangian method for ATC is used to solve the multi-levels system design

problem in the remaining text, and the comprehensive review of the augmented Lagrangian

method for ATC is found in Reference [67].

5.2 Passive Vehicle Suspension Design in Complex Sys-
tem

Same as Section 4.2, the optimal design of a passive vehicle suspension, shown in Figure 5.3, is

studied following Lu et al. [60]. The problem only evaluates the tire stiffness, spring stiffness

and damping coefficient, in this section, we also design the geometry of the spring and damper

to achieve the spring stiffness and damping coefficient to minimize the mean square value of the
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vertical vibration acceleration of the vehicle body. In this section, the optimization models of
all-in-one system of passive vehicle suspension design will be introduced in Section 5.2.1 then
the optimization models of multi-level system design will be formulated in Section 5.2.2, and

the optimal results would be discussed in Section 5.2.3.

5.2.1 All in One System of Passive Vehicle Suspension Design

In this section, we will construct the optimization model including the geometry design of
spring and damper in all-in-one system. deterministic design, RBDO, RBDO with inadequate

uncertainty data about the passive suspension design

The optimal design of a passive vehicle suspension, shown in Figure 5.3, is studied following
Lu et al. [60]. The objective is to minimize the mean square value of the vertical vibration
acceleration of the vehicle body, which satisfies the following constraints: a lower bound on the
road-holding ability of the vehicle (g;); an upper bound on the rolling angle (g2); a lower bound
on the suspension’s dynamic displacement to avoid bumper hitting, the so-called rattle-space
constraint (g3); a lower bound on tire stiffness because tire life is an increasing function of
tire stiffness (g4) ; an upper bound on shear stress in the spring bar (gs); a constraint confirm
the laminar flow through the orifice (gg); a layout constraint (g7); and an upper bound on
admissible orifice diameter. The constraints g5 to gs are related to the geometry of spring and

damper as Figure 5.4 shown.

We study the same problem with different uncertainty level, namely, deterministic problem
with no uncertainty, RBDO with uncertainties known for distributions and RBDO problem with
inadequate uncertainty data. Following, the optimization models of these three design problem

will be constructed.
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Figure 5.3: Passive vehicle suspension

Deterministic Optimization Model

min 2% = (rAV/m2)(cpk + (M +m)c2k ™)

¢ydy Dyic,dp,ds,do
TAVm Ck c\? c? cik?
- —— i\
o (bog2k><(M+m M) T Mm T mar =

go = 7.6394(4000(Mg) *Pc—1) =1 <0

g5 = 0.5(Mg)"?(KPcpe "(M +m) " +¢)72-1<0
5.4
gr=((M+m)g)** ;' —1<0 (5.4)

95 = Tspring — Tadm <0
ge = Re — 5000 < 0

gr=dp—(D—d) <0

dp —d
gs =do — P2 %<0

The problem parameters are provided in Table 5.1.

The spring stiffness ¢ and damping coefficient k& can be expressed as function of spring and
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©
@ v=dy/dt

Figure 5.4: Spring and damper

damper geometry as Figure 5.4. The formula is shown in Equation (5.5) to (5.6)

d‘G
d2 ! d2 4 2
- 1281/% (5.6)

where d is the wire diameter, D is the coil diameter, . is the number of coils, dp and dg are
the diameter of the piston and shaft respectively (see Figure 5.4). The spring stiffness ¢ and

damper coefficient should be regarded as two equality constraints in Equation (5.4).

The constraint g5 is an upper bound of shear stress in the spring bar, the shear stress of

spring can be expressed as

S8FD AF
Tspring — Td3 + 7T_d2 (57)
where F' is the weight of the vehicle.

The constraint gg is used to confirm that the oil is maintain the laminar flow through the

orifice, and the Reynolds number (Re) in gg can be formulated as

Re = M (5.8)

v
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Table 5.1: Suspension problem parameters

Dynamic load coefficient, b 0.27
Vehicle velocity, V' (m/s) 10
Gravity acceleration, g (cm/s?) 981

Road irregularity coefficient, A (cm? cycle/m) | 1

Sprung mass, M (kg/cm - s?) 3.2
Unsprung mass, m (kg/cm/s?) 0.8
Oil velocity, ven (cm/s) 100
Oil dynamic viscosity, v (Pas) 0.16
Oil density, poi (kg/ m?3) 900
Admissible shear stress, Toqm (N/mm?) 660

RBDO Model

min Z2 = (rAV/m?)(cpk + (M +m)ck™1)

C)Ck 7k

X = [daDvimdP?dSdeack]
TAVm [ 2 - c? " crk? _1<o0
bog?k M+m M Mm mM?

g2 = Pr[7.6394(4000(Mg) *°c - 1) — 1 < 0] > R,

g1=Pr

g3 = Pr[0.5(Mg)"(K*crc "M +m) ™ +¢)" 2 -1 <0 > R,
91 = Prl((M + m)g)* e —1<0] > R 5.9
95 = Pr[Tapring — Tadm < 0] > Ry
gé = Pr[Re — 5000 < 0] > R,
gr=dp — (D —d) <0
dp — dg

gs = do — 5 =0
(dp — d%)/4)?
hi: k=128v~—~——*=221 7
! A5 L,
. ‘G
2" 8D3,

The constraint g; to constraint gg are reliability constraints. The reliability target is given
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as R, = 0.9. The underlying distributions of uncertain parameters are followed Gaussian

distribution as shown in Table 5.2.

Table 5.2: Uncertainty of passive vehicle suspension design in complex system

A | A~ N(1,0.03%) cm?/(cycle - m)
M | M ~ N(3.2,0.03%) Kg - sec? /cm
m | m ~ N(0.8,0.005%) Kg - sec?/cm
v v ~ N(0.16,0.0016%) Pas
Poil p ~ N(900,9%) (kg/m?)

RBDO Model with Inadequate Uncertainty Data

When the underlying distributions of uncertainties are unknown, the RBDO problem becomes
RBDO with inadequate uncertainty data, then Equation (5.9) can be transformed as Equation
(5.10). The initial samples are given in Table 5.3. Table 5.4 shows the relationship between

parameters in form of samples and constraints.

Table 5.3: Available initial data of uncertainties in Equation 5.10

A 1.00174959561666 0.982775981128189
M 3.20505014964935  3.24547705458722
m  0.795651191446309 0.799194677228595
v 0.160761013223448 0.159443262871706
Poir  898.419085163724  903.216378191180
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min Z2 — (rAV/m*) (ck + (M 4+ m)ck™)

c,Cr,k

X = [d7D77:ca dP7dS7dO7Ck]
TAVm k. C 2 n c? n crk? _1<o
bog?k M+m M Mm mM?

g2 = Pr[Pr[7.6394(4000(Mg) "¢ —1) =1 < 0] > R;] > CB

Pr

g1 = Pr

g3 = Pr[Pr[0.5(Mg)"*(k*crc " (M +m) ' 4+ ¢)7/2 —1<0] > R > CB
ga = Pr[Pr[(M +m)g)*¥¢;' —1 <0/ > R]>CB (5.10)
g5 = Pr[Pr{Tpring — Taam < 0] > Ry) > CB

ge = Pr[Pr[Re — 5000 < 0] > R] > CB

g7:dp—(D—d)§0

dp —d
gs = do — P2 5 <0
(&, — d2)/4)
hy : k =128V ——72"——
' dbL,
d*G
hg.C—gD—gic

The confidence bound (C'B) will be updated with the increment of samples. The reliability
target is given as R; = 0.9. The confidence range target is given as C'R; = 0.9. The constraints’
confidence bound limit of optimum must satisfy the confidence range target. Table 5.4 shows

the relationship between parameters in form of samples and constraints.

Table 5.4: Parameters respect to the constraints of the passive vehicle suspension design prob-

lem

g1 92 93 g4 G5 Ge

AV
M|v v v v V
m |V v vV
v v
Poil v
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5.2.2 Multilevel Passive Vehicle Suspension Design

In this section, we will partition the passive vehicle suspension design (Section 5.2.1) into multi-
level system design. If the equality constraints can be considered as analysis models, then we
assume the ¢, k are the responses from analysis model hq, hy. Therefore, the Equation (5.4),
(5.9) and (5.10) are partitioned as shown in Figure 5.5. Here the top level is the system-level of
passive vehicle suspension design (denote as Py) and the lower level is the subsystem level about
the geometry design of damper (denote as Pp) and spring (denote as Ps). The system-level
problem is evaluated the mean square value of the vertical vibration acceleration of the vehicle
body. The subsystem level design problem calculate the response from each corresponding
analysis model h; and ho, and they share the linking variables. Input of system-level design
problem is tire stiffness (¢ ), while the responses from lower level system are damping coefficient
(k) and spring stiffness (c). Inputs of subsystem level design problems are the number of coils i,
the diameter of the piston dp and the diameter of the shaft dg, the responses ¢, k returned from
the geometry of spring and damper, the linking variables between the subsystem level design
problem are wire diameter d and coil diameter D. Categorization of responses and variables is
given in Table 5.5. Only the value of ¢, k,d, D are passed up and cascaded down between the

system and subsystem level design problems.

Following, we only construct the multi-level optimization model of RBDO with inadequate
uncertainty data, the deterministic optimization model and RBDO model can be constructed

by analogy.

Table 5.5: Summary of responses and variables of passive vehicle suspension design

Responses Local Linking Responses  Uncertainties
variables  variables from lower
level
Suspension System | N/A Ch N/A e, k A, M, m
Damper k dp,ds,do d,D N/A V, Poil
Spring c Qe d,D N/A M, m

The system-level design problem (passive vehicle suspension design problem) can be ex-
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Passive vehicle
suspension system

c k
4 N 4 N
E < ------—---- > E
2
d,D 2
ﬁ _
Spring system Damper system

Figure 5.5: Multi-level passive vehicle suspension design structure

pressed as Equation (5.11).
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System-level : Passive vehicle suspension design problem Py

min 22 = (wAV/m?)(exk + (M + m)k~) + war (e, k. d, D)

c,cp k,d,D
A 2 2 2
TAVm o C n c n crk _1<o
bog?k M+m M Mm mM?

g2 = Pr[Pr[7.6394(4000(Mg) "¢ —1) -1 <0] > R] > CB

g1 = Pr [Pr

g3 = Pr[Pr[0.5(Mg)Y?(K*cee ' (M +m) " + )72 -1<0] > R] > CB

g1 = Pr[Pr[(M +m)g)**"c,' —1<0] > R]>CB

The constraints g; to g4 are constrained to achieve a certain confidence range to provide a
creditable reliability estimation. The reliability target is given as R; = 0.9 and the confidence
range target is also given as C'R; = 0.9. The confidence bound (C'B) will be updated with the
increment of samples. The constraints’ confidence bound limit of optimum must satisfy the

confidence range target.

The two subsystem (damper system and spring system) design problem can be stated as
Equation (5.12) and (5.13). For each problem, the design objective is to minimize the devia-
tions between the targets and responses or linking variables. The damper design problem gets
the response k£ from analysis model Ay, and the spring design problem gets the response ¢ from
analysis model hy. The variables d and D are subsystem linking variables. The parameters
EV.cY,dY, DY are target values cascaded down from passive vehicle suspension design prob-
lem. The constraints gs, g¢ are constrained to achieve a certain confidence range to provide a
creditable reliability estimation. The reliability target is given as R; = 0.9 and the confidence
range target is also given as C'R; = 0.9. The confidence bound (C'B) will be updated with the
increment of samples. The constraints’ confidence bound limit of optimum must satisfy the

confidence range target.
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Subsystem level : Damper design problem Pp
min ~ (k—kY)2 + (d—d")* + (D — DY)?

k.dp,ds,do,d,D

g6 = Pr[Pr[Re — 5000 < 0] > R;] > CB

dp —d
gs = do — = 5 %<0
(dp — d3)/4)?
hy: k=128y—~+—270 ~
! di L,
where
oi oid
Re — PoilVoil O
v

Subsystem level : Spring design problem Pg

min (¢ = ) + (d ") + (D — DV)?

g5 = Pr [PI‘ [Tspring — Tadm < 0] Za Rt] >CB
d*G
o =%
2 8D3i,
where

SFD AF
Tspring = PR

5.2.3 Optimal Results and Discussion
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(5.12)

(5.13)

In this section, the optimal results of all-in-one system design and multi-level system design
would be given and discussed. We focus on the results of sampling augmentation application
of multi-level system. First, the optimal results will be compared between all-in-one system
design and multi-level system design, then the detailed results of all-in-one system would be
demonstrated, and then the optimal results of multi-level system design would be shown. The
results of deterministic design, RBDO, and RBDO with inadequate uncertainty data would be
compared. We will use Monte Carlo Simulation to acquire the reliability value of the optimal
points, which referred as MCS reliability denoted as Rjy;cg) to represent as true reliability.

About the RBDO with inadequate uncertainty data, the Bayesian reliability Rp defined in



section 3.1.2 is used to represent the estimation value of the reliability distribution.

In section 2.3.3, two types of MCMC filter mechanisms are proposed. The difference
between these two filters is that when a new sample is rejected, one replicate the previous sample
as a new one which the other one take a completely new measurement sample. Therefore, we
have three scenarios in our study. Scenario 1 is sampling augmentation with MCMC of accepting
current sample which means that when rejected sample occurs, the current sample be accepted
as an additional sample. Scenario 2 is sampling augmentation with MCMC of accepting an
additional sample which means that when rejected sample occurs, the filter mechanism will
continue still an acceptable samples appear. Scenario 3 is sampling augmentation without
MCMC filter mechanism. In the following, these three scenarios would be compared to show

the effectiveness of MCMC filter.

Comparison of Optimal Results between All-in-One System and Multi-Level Sys-

tem

Table 5.6 shows the optimization results obtained from the all-in-one and the analytical target
cascading models. And the optimization results with different level of uncertainties are also
given. The ATC solutions were obtained following top-down implementation fashion. After
solving the system level, and the subsystem problem were cascaded based on the optimal design
at the system level, and the subsystem optimal designs were passed back to the system level
after minimizing deviations between the responses and targets. This top-down and bottom-up

process completed one iteration loop in the ATC process and it was repeated until convergence.

The objective function values of deterministic and RBDO in all-in-one system and multi-
level system are quite close, respectively as shown in Table 5.6. But the objective function
values of three types sampling augmentation process are different in all-in-one system and
multi-level system. The insistency of sample information in multi-level system would affect
the search of optimum. Although the optimum of multi-level system is different as all-in-one
system, it still give an acceptable optimal design. As the overall results of Ry;cg, the all-in-one
system provide a higher reliability results, and higher confidence range about the reliability

distribution which is larger than the reliability target.
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Table 5.6: Comparison all in one and ATC optimal result with and without MCMC

72 Rucs Confidence range
Deterministic | 2819049 (1,0.496,0.498,0.499,1,1) N/A
RBDO 2881346 (1,0.90,0.90,0.90,1,1) N/A
All-in-one | Scenario 1 | 2927656 (1,0.9404,1,0.9365,1,1) (1,1,1,1,1,1)
Scenario 2 | 2899148 | (1,0.9404,0.9385,0.9808,1,1) (1,1,1,1,1,1)
Scenario 3 | 2899148 | (1,0.9404,0.9385,0.9808,1,1) (1,1,1,1,1,1)
Deterministic | 2819019 (1,0.496,0.498,0.498,1,1) N/A
RBDO | 2887505 (1,0.90,1,0.90,1,1) N/A
Multi-level | Scenario 1 | 2888959 | (0.9999,0.9215,0.9223,0.9468,1,1) | (1,0.940,1,1,1,1)
Scenario 2 | 2976893 (0.9496,0.9215,1,1,1,1) (0.9496,0.9215,1,1,1,1)
Scenario 3 3051018 (0.70,0.9215,1,1,1,1) (0.9496,0.9215,1,1,1,1)

Optimal Results in All-in-One System

Table 5.7 shows the comparison of deterministic, RBDO ,RBDO with inadequate uncertainty
data (MCMC of accepting current sample). Deterministic design is assumed that there are no
uncertainties, in other words, we assume that we exactly know the parameter values. The opti-
mum of deterministic optimization should be more affirmatory than which with uncertainties.
RBDO with inadequate uncertainty data should be the most conservative one of these three
types optimization problems. Due to lack of information about the uncertainties, the reliability
estimation in RBDO with inadequate uncertainty data is also regarded as a uncertain quantity:.
Therefore, the reliability becomes a distribution and the reliability estimation should confirm
a certain degree confidence range target (the concept is the same as the reliability value of this
reliability distribution). In order to confirm the confidence range of reliability distribution, the
optimum becomes most conservative one of these three types optimization problems. Although
RBDO with inadequate uncertainty data is the most conservative one, it still give an acceptable

optimal results.

In the practical engineering community, the characteristics of underlying distribution about
the uncertainty cannot be actually known, what we can do is measuring sampling from the un-

derlying distribution and make inference about the underlying distribution. Optimal sampling
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Table 5.7: Comparison of optimal results in all-in-one problem

AiO With MCMC(current sample) AiO RBDO Aio Deterministic
d (mm) 5.3256 5.112 4.972
D (mm) 120.4 116.0 112.5
le 12 12 12
dp (mm) 20.17 20.58 15.97
ds (mm) 10.58 10.60 10.00
do (mm) 3.907 4.143 2.932
c 388.0 446.8 401.3
Ck 1440 1438 1426
k 23.90 20.77 20.79
52 2927656 2881346 2819049
Rucs (1,0.9404,1,0.9365,1,1) (1,0.90,0.90,0.90,1,1) | (1,0.496,0.498,0.499,1,1)
Confidence range (1,1,1,1,1,1) N/A N/A

augmentation provide an acceptable estimation of reliability distribution via measuring addi-
tional samples during optimization iterations. And we can save a lot of fund to sampling great

amount of samples to represent the underlying distribution of uncertainty .

Table 5.8 shows the comparison of three types sampling augmentation processes. Three
sampling augmentation processes give additional measurements on parameter M relative to the
critical constraint g4. The filter mechanism MCMC would help the convergency of optimization
in sampling augmentation process. Scenario 3 need to cast 43 additional samples to obtain a
feasible solution. Yet, both two sampling augmentation with MCMC (Scenario 2 and 3) cast
fewer samples to give acceptable solutions. Because the biased samples would make the reliabil-
ity estimation unstable, and the confidence range of reliability distribution would fluctuate up
and down, then the search directions of optimization would be affected by fluctuated confidence

range values.

Although scenario 2 give a better optimum than which scenario 1 given, it use more
samples actually (20+14 v.s. 20). Scenario 1 replicate the previous sample as a new one when

a new sample is rejected. In the view of limit resource of measurement, we can assert that the
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Table 5.8: Comparison of optimal results in all-in-one problem with filter mechanism

Scenario 1 Scenario 2 Scenario 3
d (mm) 5.3256 5.177 5.177
D (mm) 120.4 117.4 117.4
le 12 12 12
dp (mm) 20.17 20.04 20.04
ds (mm) 10.58 10.57 10.57
do (mm) 3.907 3.999 3.999
c 388.0 388.0 388.0
Ck 1440 1446 1446
k 23.90 21.04 21.04
72 2927656 2899148 2899148
Rp (0.99,0.99,0.99,0.99,0.99,0.99) | (0.99,0.94,0.91,0.96,0.99,0.99) | (1,0.92,0.91,0.96,1,1)
Rucs (1,0.94,1,0.94,1,1) (1,0.94,0.94,0.98,1,1) (1,0.94,0.94,0.98,1,1)
Confidence range (1,1,1,1,1,1) (1,1,0.98,1,1,1) (1,1,0.98,1,1,1)
Adding procedure 20 on M 20 on M 43 on M
No.rejected sample 7 14 N/A
No. combination 352 352 720
Active constraint 94 g4 g4

sampling augmentation with MCMC of accepting current sample is the best one choice when

we want to use the least samples.

Optimization Results in Multi-Level System

Table 5.9 shows the comparison of deterministic, RBDO ,RBDO with inadequate uncertainty

data (MCMC of accepting current sample). In intuitive, the less amount of information, the

more conservative optimal result obtained. The optimal results of RBDO with inadequate

uncertainty data should be the most conservative one. The function value 72 shows that the

RBDO with inadequate uncertainty data is the most conservative one. We know that relia-

bility estimation in RBDO with inadequate uncertainty data could be regarded as a uncertain

77



Table 5.9: Comparison of optimal results of passive vehicle suspension design in complex system

Mutli-level With MCMC(current sample) | Mutli-level RBDO | Mutli-level Deterministic
d (mm) 8.894 8.890 8.851
D (mm) 200 200 200
Te 20 20 20
dp (mm) 92.50 20.00 19.64
ds (mm) 10.00 12.16 10.29
do (mm) 1.00 3.691 3.941
c 387.2 386.6 379.8
Ck 1441 1438 1426
k 21.04 21.96 20.77
52 2888959 2887505 2819019
Ryes (0.9999,0.9215,0.9223,0.9468,1,1) (1,0.90,1,0.90,1,1) | (1,0.496,0.498,0.498,1,1)
Confidence range (1,0.940,1,1,1,1) N/A N/A

quantity as previous assertion. The reliability should achieve a certain confidence level the
satisfying the probability of the reliability distribution larger than the reliability target should
be bigger than the confidence range target. Therefore, in order to comply with the confidence
range target, the optimum becomes more conservative than which of RBDO obtained. Yet,
the sampling augmentation is given a quite closer optimum comparing to which RBDO given.
Sampling augmentation cast additional samples to increase the accuracy of reliability estima-
tion during optimization iterations. Therefore, we can save a lot of fund to sampling great
amount of samples to represent the underlying distribution of uncertainty ( we use 10° samples

to simulate the underlying distribution ) by using the sampling augmentation with MCMC.

The comparison of optimal result with filter mechanisms is provided in Table 5.10. Three
sampling augmentation processes give additional measurements on parameter M relative to the
critical constraint g4. Both sampling augmentations with MCMC perform better on function
value 52 than on which without MCMC. The geometry design of spring have no significant
difference. The most difference is the design of tire stiffness ¢,. The convergency rate would

be improved by MCMC filter mechanism. As Table 5.10 shown,scenario 3 uses 50 additional
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Table 5.10: Comparison of optimal results in complex system with filter mechanism

Scenario 1 Scenario 2 Scenario 3
d (mm) 8.894 8.894 8.894
D (mm) 200 200 200
ie 20 20 20
dp (mm) 22.50 22.66 22.96
dg (mm) 10.00 10.00 10.00
do (mm) 1.00 1.00 1.00
c 387.2 386.6 379.8
C 1441 1518 1569
k 21.04 21.85 22.92
72 2888959 2976893 3051018
Rp (1,0.91,1,1,1,1) (1,0.91,1,1,1,1) (0.99,0.99,1,1,1,1)
Ryreos (0.9999,0.9215,0.9223,0.9468,1,1) | (0.9496,0.9215,1,1,1,1) | (0.70,0.9215,1,1,1,1)

Confidence range

(1,0.99,1,1,1,1)

(1,0.99,1,1,1,1)

(0.99,0.99,1,1,1,1)

Adding procedure 40 on M 40 on M 50 on M

No.rejected sample 20 14 N/A
No. combination 672 672 848
Active constraint g4 g4 g4

samples (and 50 optimization iterations) to obtain the feasible solution and the reliability

is poor comparing with optimum with MCMC. Because the biased samples would affect the

reliability inference and then the confidence range of reliability distribution becomes unstable

and fluctuated. The convergent rate may be slow down when the inconsistency of constraint

value (confidence range) occurred. By the filter mechanism, the effect of biased samples can be

eliminated, then the convergent rate can be improved.

Both sampling augmentation with MCMC use same number of samples to make inference

in optimization models, however, scenario 2 casts more additional samples. Actually, the filter

mechanism MCMC of accepting an additional samples measures additional samples until an

acceptable samples occur when the rejected sample exists. So the number of additional samples
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of scenario 2 is 40+ 14 = 54, which is more than scenario 1 (40). Scenario 1 spend less additional
samples to perform optimization, it gives a set of optimal point with smaller function value
and higher Rp than which with MCMC of accepting an additional sample. Therefore, we can
assert that sampling augmentation with MCMC of accepting current sample could use the least

samples to provide a creditable reliability estimation and optimal result.

5.3 Summary

In this chapter, we extend the sampling augmentation to multi-level system design with inade-
quate uncertainty data. In engineering community, the multi-level systems design is necessary.
No single design group could handle a complex system design problem. If there are also inade-
quate uncertainty data in multi-level system design problem, the sampling augmentation would
also be helpful to use fewer samples to estimate reliability and allocate the resource efficiently.
We see all constraints in different system level design problem to decide which constraint is
critical one which is same as the all-in-one system. Because the measurement of samples is
expensive, the efficient resource allocation is prerequisite. We only measure additional samples

when the corresponding uncertain parameter is important.

However, allocating resource efficiently is not enough, measurements sometimes will go
wrong, the filter mechanism MCMC is used to avoid higher biased samples. Both two sampling
augmentations with MCMC filter give a significant effect on filtering biased samples and im-
provement of convergency of optimization. We use the concept of sample combination instead
of a set of all uncertainties to do Bayesian binomial inference. The Bayesian reliability Rp is
quite close to the MCS reliability Ryscs, therefore, we can assert that the concept of sample
combination helps us to reveal all possible situations that each sample be matched and give a
creditable reliability estimation. In this chapter, we can see that the sampling augmentation
could also be applied to multi-level system design and have a good performance on reliability

estimation and resource allocation.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

The goal of this thesis is to provide a systematic approach for sample augmentation such that

the final reliability estimation of a complex system can be acceptable to a specific level.

In Chapter 2, the evaluation of reliability with inadequate uncertainty data is done via
Bayesian inference. An MCMC sample data filter is also developed to avoid the influence of
biased samples. In Chapter 3, an optimal sampling augmentation in RBDO with inadequate
uncertainty data is proposed to cast additional samples with least resources. The addition of
samples is decided based on the allocation of resources and based on the quality of the samples
and the biased samples are filtered via MCMC. In Chapter 4, two case studies in single level
system are demonstrated to show the validity of the proposed method. In Chapter 5, the
proposed method is extended to multilevel system to reveal the real complexity of engineering

design.

The specific contributions of this thesis are summarized into four main points :

1. This thesis uses limited samples to give an acceptable optimal result and
accurate reliability estimation : The measurement of samples can be costly. In
literature, the amount of samples used to perform reliability analysis is still too large.
In this thesis, we proposed an optimal sampling augmentation and resource allocation
for engineering design. The concept of sample combinations not only reveal all possible
situations of samples but also decrease the amount of samples requires to infer a reliability

distribution.

2. This thesis allocates resource more efficiently : The differences of uncertainties
can only be reveal with the concept of sample combinations. We can cast additional
samples only when they are important instead of measuring all uncertainties, therefore,
the unnecessary redundant measurements can be avoided. The samples on constraints
with lowest confidence range and uncertainties with high sensitivity are added. With this

strategy we could use the least resource to reach a desired reliability goal.
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3. This thesis filters biased samples via Markov chain Monte Carlo method :
Badly measured samples will affect the accuracy of reliability estimation. The biased
samples will also influence the convergency of optimization due to the unstable of con-
fidence range which corresponded to constraint. The proposed provides a a mechanism
to avoid the influence of such biased samples. With the MCM filter, advert effects of
biased samples can be avoided such that one does not need to cast much more samples to
alleviate the influence of biased samples. In addition, the reliability estimation and the

optimal sampling augmentation become more robust.

4. This thesis extents the proposed method to multilevel systems : Modern
engineering products are complex systems design. Designer of these products are sepa-
rated into several groups to handle different part of design. Inadequate uncertainty data
also exist in this architecture. The proposed sampling augmentation method can assist

designers to use limited samples to give an acceptable yet reliability optimal solution.

6.2 Future Work

The following research activities deserve much in-depth investigation in the future :

1. Take the cost of measurement into consideration. Different uncertainties may have differ-
ent measurement cost. Under the cost limit, the number of samples might be constrained

and the resource allocation strategy should be modified.

2. Considerate the dependency of uncertainties. The sensitivity analysis in resource al-
location is assumed that the uncertainties are independent. Unfortunately uncertainties
sometimes influence each others. The sensitivity analysis of these dependent uncertainties

can be taken into consideration.

3. Deal with design problem with inadequate uncertainty data in objective function. In
this thesis, when objective function is also with inadequate uncertainty data, we use the
average value of samples data then make it become a deterministic objective function.
The probability value of objective function with inadequate uncertainty data need to be

discussed.
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