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針對非充裕不確定資料設計之最佳取樣與資源配置

學生：林彬儀 指導教授： 詹魁元博士

國立成功大學機械工程學系

摘 要

可靠度設計需有大量的樣本量測以建立不確定因素的模型，但在實際工程運用上，樣本的量

測費時且昂貴。雖然，大量的量測可以提供一較為適用的設計，但設計者經常必須在有限時

間內根據有限的資訊做出設計判斷。文獻中，多採用貝氏二項式推估法來進行具有樣本型態

的不確定性因素的可靠度評估。然而，文獻中均假設一組不確定性參數為一個樣本，事實

上，每一次量測均代表一個樣本。因此，在增加額外的樣本時，不同不確定性參數的對最終

設計的貢獻差異需被納入考量。本文透過樣本組合的概念來使不確定性因素的相對重要性在

增加樣本時得以被顯現。本文建立一藉由在最佳化中逐漸增加樣本來協助有效的資源分配與

進行非充裕不確性資料可靠度設計的方法。為了避免量測品質不佳的樣本影響可靠度評估的

準確度，因此，本研究發展一以馬可夫鏈蒙地卡羅法為基礎的樣本過濾機制來避免偏頗樣

本。本研究可以在滿足可靠度目標與使用者定義的信賴區域中，透過逐漸增加少許的新樣

本，並有效的配置樣本進而提供較準確的可靠度評估，獲得可接受的可靠度最佳化設計。由

於信賴區域受限於樣本數量，本文定義在此樣本數量下的信賴區域的上限為信賴邊界，並將

其納入可靠度最佳化的拘束條件中。額外的樣本量測在關鍵的拘束條件相關的不確定性因素

上來幫助可靠度最佳化的進行。設計與額外的樣本量測會持續進行直到滿足設計者要求的目

標。透過此研究方法 ，可藉由較少且較有效率的樣本量測配置進行可靠度最佳化設計。本論

文以一個數學範例與一汽車懸吊系統設計演示此方法並討論結果，最後，並將汽車懸吊系統

設計延伸至複雜系統來示範此設計方法。
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ABSTRACT

Uncertainty models in reliability-based design optimization problems require a large amount

of measurement data that are generally unavailable in engineering practice. Each measurement

requires resources, sometimes costly. Although a comprehensive set of measurements could lead

to design that is more applicable, engineers are constantly challenged to make timely design

decisions with only limited information at hand. In the literature, Bayesian binomial inference

techniques have been used to estimate the reliability value of a function of uncertainties with

limited samples. However, existing methods assume data set as one sample for each uncertain

quantity, while in reality we consider one sample as one measurement on a specific quantity.

The relative contributions of uncertainties on the final optimum should be considered when

adding samples.

In this thesis, we use the concept of sample combinations to reveal the relative contributions

of uncertainties when adding samples. We propose a sampling augmentation process to add

measurements of uncertain quantities only when they are ‘important’ by allocating resource

more efficiently. To alleviate the impact of bad samples, biased samples that would affect

the evaluation of reliability inference will be filtered via a mechanism through Markov chain

Monte Carlo method. Once a desired reliability target and a user-specified confidence range

are provided by the designer, a confidence bound limit that predicts the upper bound of no-

failure confidence is then calculated. This confidence bound limit is then considered in a

reliability-based design optimization framework as constraints. Additional measurements on

critical constraints with respect to uncertainties in the form of discrete samples are necessary.

Design then iterates until the desired targets are reached. In this work our method could

minimize the efforts and resources without assuming distributions for uncertainties. Several

examples are used to demonstrate the validity of the method in product development.
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Chapter 1 Introduction and Motivation

1.1 Introduction

Reliability is one of the most critical attributes in product and process design [1]. Performances

of products need to undergo various test procedures and ensure their satisfactions before they

are in the hands of customers. Therefore reliability is the probability that a system satisfies a

given limit state function that defines failure and success under various sources of variations and

uncertainties. Figure 1.1 shows the reliability analysis procedure that quantifies the impacts

of uncertainties through a limit state function. These sources of uncertainties are inevitable in

product development process because they exist in the environment, in the human who uses

them, in the measurements, as well as in the manufacturing processes. Due to the advancement

of living quality, many customers consider reliability has a higher priority over cost when

choosing a product. Therefore, in the past decades, the engineering and design community has

developed various methods to improve reliability of an engineering system. In the literature, we

use reliability-based design optimization (RBDO) to indicates methods that are developed to aid

engineering analysis under uncertainties early in the design phase in the product development

process [2].

Limit state 
function

X g(X)

PD
F

g = 0

Limit state function g(X)

PDF of limit state 
function

R = Pr[G ≤ demand]

Uncertainty

PD
F

Random variable X

Figure 1.1: Reliability analysis procedure

1



In RBDO framework, a standard optimization routine is coupled with reliability analysis

that requires each design candidates to be feasible yet reliable. This coupling increases the

computational cost of RBDO and has been one of the most studied area in RBDO literature.

Examples of these methods include: the first/second order reliability method [3–5], adaptive

importance sampling [6], advance mean value [7], and its hybrid variant [8], sequential opti-

mization and reliability assessment [9], and single-loop method [10]. Furthermore, methods for

reliability assessment have been proposed to enhance numerical efficiency and stability [11–13].

The first step in reliability analysis is to obtain the models of uncertainty. Quantifying

uncertainties requires a large amount uncertainty data. In the literature uncertainty can be

classified into one with probability distributions and one with limited available samples. When

the random property of an uncertainty can be completely known and modeled as a statistical

distribution, it is defined as an “aleatory” uncertainty; whereas an uncertainty with only limited

available samples is defined as an “epistemic” uncertainty. Although most RBDO research

assumes the underlying distributions of all uncertainties be known, in actual engineering design,

much of information regarding the uncertain quantities is only available in the form of limited

samples instead of probability distributions. In fact, statistically the exact distribution of

aleatory uncertainties can only be known when the one has infinite number of samples about the

uncertainty. In most cases, we extract the probability distribution via inferring from samples,

as Figure 1.2 shown. We can summarize that when an uncertain quantity has abundant sample

Figure 1.2: Sample Inference

measurements, we treat them as “aleatory” uncertainty with distributions inferred from the

samples. However, in practical engineering application, the amount of samples is extremely

restricted due to limited cost and time. As a results, the size of samples are usually not enough
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to infer the probability distribution of population with high confidence. We call such samples

as inadequate uncertainty data.

When the available uncertainty data is inadequate, the classical probability theory [1–13]

may be improper to model uncertainties. Most probability analysis and design assume that

uncertainties are known for distributions can not capture the reality of engineering practice.

How to use epistemic uncertainties to do reliability analysis becomes a bottleneck in engineering

applications. To deal with inadequate uncertainty data, different methods have been developed

in the literature. Some researchers concentrate on inferring the probability distributions of

uncertainties from a small sample sets so as to make RBDO algorithms applicable [14–16].

However, inferring a probability distribution with a few samples could generates large errors

and results in erroneous results in the reliability prediction [17]. Another approach focuses

on reliability analysis and design optimization without inferring the probability distribution of

uncertainties, such as possibility-base design optimization (PBDO) [18,19] based on possibility

theory [20–25], evidence-based design optimization (EBDO) [26] based on evidence theory [27–

29], and Bayesian RBDO [17,30,31] based on Bayes theory [32–35].

The possibility-based and evidence-based methods have the weakness that the uncertainties

are modeled more or less based on the “ expert opinions” that may be different for each expert

and may even be conflicting [31]. Methods based on Bayes theory are called Bayesian approach.

In this thesis, Bayesian approach is better suited to evaluate the reliability due to the advantage

that (1) it provides a unified way for aleatory and epistemic uncertainty in a single framework,

(2) it can conveniently update the degree of uncertainty, and (3) it is widely applied in many

engineering and science fields. For example, Bayesian theory is used to estimate the multi-

frequency offset to assist decision-making in a multi-objective environment [36], to access the

reliability of a power network [37], to estimate the reliability of on-site lifetime measurements

that are fuzzy in nature [34], to estimate the reliability of an ‘inexact’ small data set [35], to

series systems of binomial subsystems and component [38], to the effectiveness of reliability

growth testing [39], to robust tolerance control and parameter design in the manufacturing

process [40], and to input uncertainty modeling [41]. Bayesian updating has been implemented

using the Markov chain Monte Carlo (MCMC) simulation for structural models and reliability

assessment [42]. Due to the advantages of Bayesian approach, in this thesis, Bayesian approach

would be used to evaluate reliability.
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1.2 Motivation and Objective

In engineering practice, the uncertainties are often provided as a small number of samples

from historical data or actual experiments. Although several methods have been developed to

tackle evaluation of reliability with limited samples, the amount of samples is still great while

considering the expense of measurements. In existing literatures, the reliability estimation

is obtained by using a set of all uncertain quantities, the redundant samples which means the

samples have no significant effect on accuracy of reliability evaluation is also measured. The cost

of measurement can be optimized if the measurement of redundant samples can be minimized.

We would like to develop a much more efficient measurement scheme by only measuring samples

when they are important. In other words, if the lack of a certain sample of an uncertainty would

affect the accuracy of reliability estimation, that sample should be added.

The relative importance of different uncertainty on the reliability analysis received little

attention in the literature. Without understand which sample is more critical, we are unable

to cast these samples more wisely. For example, if we have three uncertain quantities, A,B,C.

The lack of information about A will decrease the accuracy of reliability estimation and have

the greatest influence on optimization results compared with the other uncertainties. Therefore,

with limited resources, the need to increase the sample size of A has the higher priority over B

and C. In the literature, most measurement schemes suggest that an entire set of measurements

on A,B,C be added to existing sample when additional samples are necessary. We believe that

samples should be treated differently such that their relative importance on reliability analysis

can be revealed.

In this thesis, we propose an approach to cast the minimal amount of additional samples

required to achieve a specific level of accuracy in reliability analysis, and then use it in the

optimal product design under inadequate uncertainty data. In addition to the reveal the relative

importance of uncertainty samples, we also emphasize on measurements that might be wrong.

This biased sample measurement could alter the reliability estimation, especially for a small

sample size. We would like to develop a mechanism such that these biased samples will not

undermine our design process. We want to eliminate the improper samples to enhance the

accuracy of reliability estimation under limited samples situation.
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1.3 Organization of the Thesis

The reminder of this thesis is organized as shown in Figure 1.3 . We first introduce the reliability

estimation of sample data via Bayesian theory and clarify meaning of samples in Chapter 2, the

sample filter is also via Markov chain Monte Carlo is also introduced in Chapter 2. The proposed

algorithm which doing sampling augmentation and resource allocation in optimization iteration

is introduced in Chapter 3. Two single level case studies about one mathematical example and

passive vehicle suspension design are demonstrated in Chapter 4. The case study about passive

vehicle suspension design is also extended to complex multilevel system design in Chapter 5.

Finally, conclusions and suggestions of this thesis are presented in Chapter 6.

s

Chapter 3
Optimal Sampling Augmentation 

and Resource Allocation

Chapter 2
Bayesian Reliability Inference 

with Sample Data

Chapter 4
Case Studies in Single Level 

Systems

Chapter 5
Case Studies in Complex 

Multilevel System

Chapter 1
Introduction and Motivation

Chapter 6
Conclusions and Future work

Figure 1.3: Organization scheme
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Chapter 2 Bayesian Reliability Inference

with Sample Data

The information about the underlying distributions of uncertainties are mostly assumed to be

well-known in the reliability-based design optimization community. However, both aleatory and

epistemic uncertainties that are common in practical engineering applications, do not always

have complete information about the uncertainties. Yet we have to make appropriate design

decision based on limited resources. The evaluation of reliability with inadequate uncertainty

data becomes a grand challenge for designers. In recent years, Bayesian theory has been applied

to tackle this challenge via inversion of probabilities. In this chapter, we will first introduce

Bayesian theory in data inference in section 2.1, reliability estimation with sample data will

then be discussed in section 2.2; Markov chain Monte Carlo that filters poor samples will be

introduced in section 2.3.

2.1 Data Inference using Bayesian Theory

Bayesian theory bas been applied to infer a population by samples. Because the Bayesian theory

is a new perspective of Bayes theorem via inversion of probabilities, we will first introduce Bayes

theorem before talking about Bayesian inference.

2.1.1 Bayes Theorem

Bayes theorem is a concept of conditional probability that defines the probability of event

B given event A. Equation (2.1) shows the mathematical representation of the conditional

probability of event B given event A happening.

Pr(B|A) =
Pr(A ∩B)

Pr(A)
(2.1)

Pr(A) is the probability of event A, Pr(A ∩ B) is the probability of the joint space of both

events A and B. Similarly, the conditional probability of event A on the occurrence of event B
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is shown as Equation (2.2).

Pr(A|B) =
Pr(A ∩B)

Pr(B)
(2.2)

After rearranging the fractions in the conditional probability formula, one can get

Pr(A ∩B) = Pr(A|B)× Pr(B) (2.3)

Equation (2.3) is known as the multiplication rule for probability. It restates the conditional

probability relationship of an observed event given an unobservable event in a way that is useful

for finding the joint probability Pr(A ∩ B). If we denote that Bc is the set of complement of

event B, then

Pr(A ∩Bc) = Pr(A|Bc)× Pr(Bc)

Since A = (A ∩B) ∪ (A ∩Bc), the law of total probability states that the probability of event

A can be calculated by summing the probability of its disjoint parts, then

Pr(A) = Pr(A ∩B) + Pr(A ∩Bc) (2.4)

Substituting Equation (2.4) into the definition of conditional probability, we then have

Pr(B|A) =
Pr(A ∩B)

Pr(A ∩B) + Pr(A ∩Bc)
(2.5)

Using the multiplication rule to find each of these joint probabilities, Bayes theorem for a single

event can then be derived as :

Pr(B|A) =
Pr(A|B)× Pr(B)

Pr(A|B)× Pr(B) + Pr(A|Bc)× Pr(Bc)
=

Pr(A|B)× Pr(B)

Pr(A)
(2.6)

Bayes theorem is a restatement of the conditional probability formula with the joint probability

in the numerator being found by the multiplication rule, and the marginal probability in the

denominator being found by the law of total probability followed by the multiplication rule.

Bayes theorem for a single event can be extended to general n events. If an observable

event A follows A = (A∩B1)∪ (A∩B2) · · · ∪ (A∩Bi), the law of total probability states that

the probability of an event A is the sum of the probabilities of its disjoint parts. Therefore, the

probability of event A can be written as :

Pr(A) =
n∑
j=1

Pr(A ∩Bj) (2.7)
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Using the multiplication rule on each joint probability gives :

Pr(A) =
n∑
j=1

Pr(A|Bj)× Pr(Bj) (2.8)

From definition, the conditional probability Pr(Bi|A) can also be expressed as

Pr(Bi|A) =
Pr(A ∩Bi)

Pr(A)
(2.9)

Using the multiplication rule in the numerator, with the law of total probability on the denom-

inator, we can show that :

Pr(Bi|A) =
Pr(A|Bi)× Pr(Bi)∑n
j=1 Pr(A|Bj)× Pr(Bj)

(2.10)

Equation (2.10) is known as Bayes theorem of n events which was first published in 1763

after the death of its discover, Reverend Thomas Bayes.

Note that since event A and Bi is with different amount of information, events A and

Bi are not treated symmetrically. The Bi are unobserved event and we do not know the

outcome as a priori. The event A is an observed event with probability distributions known.

The probabilities Pr(Bi), called prior probability, are assumed known before we collecting the

outcomes. The likelihood of the unobservable events Bi is the conditional probability that A

has occurred given Bi. Thus the likelihood of events Bi is given by Pr(A|Bi). The likelihood is

the weight given to each of the Bi events given by the occurrence of event A. Pr(Bi|A) is the

posterior probability of event Bi, given that event A has occurred. This distribution contains

the weight we attach to each of event Bi after we know event A has occurred. It combines our

prior beliefs with the evidence given by the occurrence of event A.

In Bayes theorem, each of the joint probabilities (posterior probability) are found by mul-

tiplying the prior probability Pr(Bi) times the likelihood Pr(A|Bi). The only thing we need

in the prior is the relative weights we give to each of possibilities. As a summary, posterior is

proportional to the prior times the likelihood. Bayes theorem is often written in form as :

posterior ∝ prior × likelihood (2.11)

A comprehensive reviews of Bayes theorem can be found in Reference [43].
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2.1.2 Binomial Distribution

Bayes theorem states that we could update the information about the posterior by getting

observations from population. As previous section shown, event A is an event observed from

population. Obtaining outcomes of event A can be represented as sampling from an underly-

ing distribution. Furthermore, sampling from a underlying distribution can be referred to as

random sampling from a very large population that follows the binomial distribution same as

coin tossing. In order to realize, in what follows, the case with coin tossing is briefly described,

followed by random sapling from a large population. We intend to show the similarities between

coin tossing and random sampling.

Coin tossing

A coin is tossed N times and count the number of heads occurring. The outcome of one toss

is independent of the outcome of previous toss. The probability of getting heads is the same

value for all tosses due to uses of the same coin. The probability of getting head is denoted as

p. Getting head is referred as “ success.”

Random sampling from a very large population

We draw a set of samples with size N . Assuming all draws are taken under the same duplicate

conditions. Some items in the population have certain attribute s. We count the number of the

items having attribute as in coin tossing. The outcome of any draw is independent of previous

outcomes. The probability of having certain attribute s is denoted as p. Having the attribute

s is referred as “ success.”

Both random sampling from a very large population and coin tossing have properties that

meet the characteristics of a binomial distributions. There are several properties in common.

These properties are characteristics of binomial distribution.

These characteristics include:

• There are N independent trials with outcomes being either “ success” or “ failure”.
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• The probability of “success” is constant over all the trials. Let p be the probability of “

success.”

• r is the number of “successes” that occurred in the N trials. r can take on integer values

0, 1, . . . , N .

Sampling from an underlying distribution can be referred to as a binomial distribution.

The binomial random variable r given the parameter value p is expressed as probability density

function (pdf) f

f(r|p) =

 N

r

 pr(1− p)N−r (2.12)

for r = 0, 1, · · · , N where  N

r

 =
N !

r!× (N − r)!

We can use the binomial random variable to calculate the likelihood of “success” event in the

following section.

2.1.3 Bayesian Binomial Inference

In a large population, we denote p as a proportion of the population with some attributes. If

we want to know the probability of having some attribute in population, we need to take a

random sample from the population and make inference of population. Bayesian inference is

new perspective of Bayes theorem. Bayesian inference can be applied to different distributions.

Since sampling from an underlying distribution can be modeled as a binomial random variable,

we will only introduce the Bayesian binomial inference. The comprehensive reviews of Bayesian

Statistics can be found in [43–47].

In this section, we briefly summarize the Bayesian binomial inference and its underlying

assumptions. Let an event with outcomes modeled as a binomial process. Given N trials, the

probability of having r success outcomes can be presented by r ∼ Bin(N, p) where Bin() is

the binomial process and p is the probability of successful events. The conditional probability
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density function f of r given p follows binomial random variable function (express in probability

density function) as Equation (2.13)

f(r|p) =

 N

r

 pr(1− p)N−r for y = 1, . . . , N (2.13)

Since we do not know the probability of successful events p, we let r be fixed at the number

of success outcome we observed and p vary over its possible values, the likelihood function is

then :

f(r|p) =

 N

r

 pr(1− p)N−r for 0 ≤ p ≤ 1 (2.14)

We see that we are looking at the same relationship as the distribution of the observation r

given the parameter p in Equation (2.13) and (2.14). But the subject of the Equation (2.14)

has changed to the parameter for the observation held at the value that actually occurred.

From Bayes theorem, posterior is proportional to the prior times the likelihood. Therefore

:

f(p|r) ∝ f(p)× f(r|p) (2.15)

Equation (2.15) only gives the shape of the posterior distribution. To get actual posterior, Bayes

theorem states that the distribution of p can be obtained using conditional probability concept

by divided a normalized factor
∫ 1

0
f(p) × f(r|p) to make sure the posterior is a probability

distribution, meaning the area under posterior integrates to 1.

f(p|r) =
f(p)× f(r|p)∫ 1

0
f(p)× f(r|p)dp

(2.16)

where f(p) is the prior distribution of p, f(p|r) is the posterior distribution of p with r success,

and f(r|p) is the likelihood of r given p.

If we want to use Bayes theorem from Equation (2.16), we need a prior distribution f(p)

about the possible value of the parameter p before getting the data. It is important that the

prior can not construct from the data. In order words, the prior need to be independent of the

likelihood. This means that the observed data must not have any influence on the choice of

prior. Following, we will look at some possible priors.
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Using a Uniform Prior

If we don’t have any idea about the prior distribution f(p), or may want to be an objective

as possible and not put personal belief into the inference, we should choose a prior that does

not favor any value over another. In this case, the uniform prior that gives equal weight to all

possible values should be used. The formulation about a uniform prior is

f(p) = 1 for 0 ≤ p ≤ 1 (2.17)

With a uniform prior, the posterior distribution is proportional to the likelihood as :

f(p|r) =

 N

r

 pr(1− p)N−r for 0 ≤ p ≤ 1 (2.18)

Equation (2.18 ) shows that the posterior follows a beta distribution beta(α, β) where α = r+1

and β = N − r + 1. Therefore, the posterior distribution of p given r is easily obtained. We

didn’t to do any integration but only to look at the exponents of p and (1− p).

Using a Beta Prior

Suppose a beta(α, β) prior density is used for p :

f(p : α, β) =
Γ(α + β)

Γ(α)Γ(β)
p(α−1)(1− p)(β−1) for 0 ≤ p ≤ 1 (2.19)

The posterior is proportional to the prior times the likelihood as :

f(p|r) ∝ Γ(α + β)

Γ(α)Γ(β)
p(α−1)(1− p)(β−1) ×

 N

r

 pr(1− p)N−r (2.20)

Since the either the prior and the likelihood will neither be affected by multiplying by a constant,

we could ignoring the constant that don’t depend on the parameters r, p in Equation (2.20),

This gives :

f(p|r) ∝ p(α+r−1)(1− p)(β+N−r−1) for 0 ≤ p ≤ 1 (2.21)

Recognizing Equation (2.21) with beta distribution with parameter α′ = α+r and β′ = β+N−r.
We can discover that we only need to add the number of successes to α and add the number

of failures to β of observations :

f(p|r) =
Γ(α + β +N)

Γ(α + r)Γ(N − r + β)
p(r+α−1)(1− p)(N−r+β−1) (2.22)
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for 0 ≤ p ≤ 1. The most important merit is that the posterior density can be obtained without

going through the integration. There is one more thing to be noted that the uniform prior is a

special case of the beta distribution where is beta(1, 1).

Conjugate Family of Priors for Binomial Observation is the Beta Family

Uniform and Beta priors enable us to calculate the posterior distribution by simply adding the

exponents of p and (1−p), respectively. Therefore, for a beta prior distribution and a binomial

likelihood, we can get a beta posterior by the simple rule “add successes to α, add failures

to β.” There is a big advantage that all we have to do is use the observations to update the

parameter of the conjugate family prior to obtain the conjugate family posterior.

2.2 Reliability Estimation with Sample Data

Design optimization with both aleatory and epistemic uncertainties should take reliability into

consideration. Reliability is the probability of acceptance of a quality function q. However, the

reliability estimation can not be evaluated by the same concept with inadequate uncertainty

data. The evaluation of reliability without adequate uncertainty data can be obtained by the

concept from Bayesian inference. Therefore, in this section, we will first introduce the Bayesian

inference of reliability, then define properties about confidence level of reliability estimation,

then clarify about the definition of “ sample ”, and then give a reliability estimation example.

2.2.1 Bayesian Inference of Constraint Reliability Values

Let N be the number of samples, p be the probability of successful outcomes, and r be the

number of successful outcomes. Before we measure samples, we have no idea about the prior

of p; therefore, a uniform prior for p, p ∼ beta(α = 1, β = 1), and a binomial likelihood

f(r|p) are used. Based on Equation (2.16), the posterior f(p|r) follows a beta distribution with

parameters α = r + 1 and β = (N − r) + 1

f(p|r) =
Γ(α + β)

Γ(α)Γ(β)
p(α−1)(1− p)(β−1) (2.23)
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The updated distribution for p is then beta(r+1, (N−r)+1). Eq.(2.16) can be used iteratively

to update p with the added information of N and r.

Bayesian binomial inference in updating probability distributions can be used to calculate

the probability of a function with discrete samples. Let XS and PS known for samples and XU

and PU known for distributions of the random variable X and parameter P , respectively. To

obtain the reliability distribution R, reliability inference must be performed at every sample

point while considering uncertainties known for distributions. The probability of a constraint

g(X,P ) being feasible given the kth sample set is obtained at different sample points for

uncertainties known for distributions as Figure 2.1 and Equation (2.24).

Rk = Pr[g(XU, PU)|(XS,PS)k ≤ 0] (2.24)

Since a constraint being feasible is generally referred to as ‘reliable’, we use Rk instead of pk

gg = 0

k = 1 k = 2 k = 3

N = 3 samples

Figure 2.1: Feasible-infeasible realization of a (XS, PS) sample given distributions of (XU, PU)

in the remaining of the text. The probability Rk is the expected feasible realization of one

sample. Therefore, the expected total number of successful events E[r] with N samples of

feasible realizations is the sum of the probabilities of all samples :

E[r] =
N∑
k=1

Rk (2.25)

Equation (2.25) is valid for both when only samples are available and when there is a mix

of samples and distributions. Using E[r] as the number of successful outcomes, the resulting

posterior reliability distribution R is followed a beta distribution with parameters α = E[r] + 1

and β = N − E[r] + 1 from Bayesian binomial inference as :

R ∼ beta(E[r] + 1, (N − E[r]) + 1) (2.26)
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2.2.2 Confidence Range and Confidence Bound

With the availability of the distribution of R with different k, we define confidence range and

confidence bound of the reliability calculation in this work. The confidence range (CR) is the

likelihood probability of the estimation of R being greater than a target Rt as:

CR = [Pr(R > Rt)] = 1−
∫ Rt

x=0

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx = 1− ΦBeta(Rt, α, β) (2.27)

The confidence bound (CB) is the right-most distribution of all infinite number of possible beta

distribution which capturing the highest confidence level given N and Rt. In other words, CB

is the upper bound of CR. The upper bound of the beta distribution occur when E[r] = N so

the parameters of beta distribution is α = N+1 and β = 1. From the definition, the confidence

bound can be obtained as

CB = max[Pr(R > Rt)] = 1− ΦBeta(Rt, N + 1, 1) (2.28)

This equation can be simplified by substituting the α = N + 1 and β = 1 into Equation (2.27)

CB = 1−
∫ Rt

x=0

Γ((N + 1) + 1)

Γ(N + 1)Γ(1)
xNdx (2.29)

We know Γ(1) = 1 and Γ((N + 1) + 1)/Γ(N + 1) = N + 1,the constant Γ((N+1)+1)
Γ(N+1)Γ(1)

reduces to
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Figure 2.2: The N -Rt-CB diagram

just N + 1. The Equation (2.29) becomes

CB = 1− (N + 1)

∫ Rt

x=0

xNdx = 1−RN+1
t (2.30)
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This simple equation link the three quantities of interest N , Rt and CB together. Equation

(2.30) shows that the confidence bound of reliability target is a function of the sample size (N).

Figure 2.2 shows the relationship between the sample size and confidence bound with different

reliability target. We observe in this diagram that increasing N or decreasing Rt will increase

CB. In order to provide higher confidence range, the increment of samples is necessary.

2.2.3 Clarification of “ Sample”

Reliability information with inadequate uncertainty data follows a beta distribution. As the

number of samples N increases, the estimation of reliability becomes more precise. When

N →∞, the distribution converges to a deterministic value with R being known exactly. The

case with infinite numbers of coincide with the assumption that the pdfs of all uncertainties

are known.

Methods in current literatures [17,30,35] assume data set include one sample as a set of

all uncertain quantities. This assumption may not reveal the true practice in the industry

where one sample means one measurements. For example, in vehicle suspension design, there

Table 2.1: Parameters in the form of samples in vehicle suspension design

Parameters Samples

Road irregularity, A A1, A2

Oil density, ρ ρ1, ρ2

Oil dynamic viscosity, nu ν1, ν2

Sprung mass, M M1,M2

Unsprung mass, m m1,m2

are several parameters in the form of limited samples, such as road irregularity, oil density,

and oil dynamic viscosity in damper, sprung and unsprung mass of vehicle. If we have two

measurements for each parameter as shown in Table 2.1, existing methods treat them as two

samples. However, these five parameters cannot be measured at same time using the same

instrument. We cannot decide which sample of a parameter should be matched to which of
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another parameter to be one sample of a set of uncertainties. The relative contributions of

uncertainties should be considered. The concept of sample combination reveals the all possible

situation that each sample be matched. In this situation, we say that there are 10 samples

and 25 = 32 sample combinations. We denote the number of sample combination as Nc in the

remaining the text and use the concept of sample combinations instead of number of sets of all

uncertainties as one sample.

2.2.4 Reliability Estimation Example

In this section, we will demonstrate Bayesian reliability inference using a mathematical example.

Let G(P1,P2) = 1 − 80/(P2
1 + 8P2 − 6.5) ≤ 0 be an inequality constraint with two epistemic

random parameters P1, and P2. The underlying distributions of P1 and P2 are of P1 ∼
N(−8.2, 0.082) , P2 ∼ N(2.2, 0.022), but we assume this is not know to the engineers. Some

samples draw for P1 and P2 are shown in Table 2.2. The underlying distributions of both

parameters were unknown and therefore samples in Table 2.2 are the only information. When

no pdfs are given, each probability Rk in Equation (2.24) becomes an indicator function where

Ik = 1 if G((P1,P2)k) ≤ 0, and Ik = 0 otherwise.

In the first case, lets’ assume we have 5 initial samples ( the first line in Table 2.2 for

P1,P2). The number of trial (N) is not 5, instead, we use the concept “ Sample Combination”

defined as number of combinations (Nc). Nc = 52 = 25.

Table 2.2: Samples of P1,P2

P1

initial samples -8.191 -8.199 -8.196 -8.214 -8.213

additional measurements
-8.201 -8.191 -8.180 -8.207 -8.196

-8.200 -8.190 -8.198 -8.180 -8.190

P2

initial samples 2.228 2.187 2.225 2.194 2.1881

additional measurements
2.210 2.136 2.184 2.232 2.208

2.211 2.177 2.190 2.191 2.182

By carrying out the probability analysis for all 25 combinations of samples, we obtain
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the indicator function Ik of each sample combination, then the expected total number of

successful events E[r] in Equation (2.25) with Nc sample combinations of feasible realiza-

tions is the sum of the probabilities of all sample combinations E[r] =
∑Nc

k=1 Ik. There-

fore, summing of probabilities of all sample combinations, we get E[r] =
∑Nc

k=1 Ik = 21,

then using Equation (2.26), the reliability can then be modeled with the beta distribution

R ∼ beta(E[r]+1, (Nc−E[r])+1) = beta(22, 5). The reliability target Rt = 0.9, we can calcu-

late the maximum probability these combination can exceed the reliability target as confidence

bound CB = max[Pr(R > Rt)] = 1 − ΦBeta(0.9, 26, 1) = 0.9354 that means these combina-

tions’ maximum confidence range, then the confidence range becomes CR = [Pr(R > Rt)] =

1− ΦBeta(0.9, 22, 5) = 0.1118.

To show how confidence range changes with more samples, we demonstrate the second case

when sample size of P1 and P2 both are 15, E[r] =
∑Nc

k=1 Ik = 209. The reliability distribution

becomes R ∼ beta(E[r] + 1, (Nc−E[r]) + 1) = beta(210, 17) and the confidence range becomes

CR = [Pr(R > Rt)] = 1−ΦBeta(0.9, 210, 17) = 0.9166. Case1 is the reliability distribution of 25

combinations and case 2 is of 225 combinations. As shown in Figure 2.3, we assert that scenario

2 has better confidence range than the scenario 1 and that the more sample combinations, the

more precious estimate of the reliability distribution.
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Figure 2.3: Reliability distribution with different sample combination of reliability estimate

example
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2.3 Sample Data Filter via Markov Chair Monte Carlo

Measurement could go wrong. The quality of sample measurement would affect the accuracy

of reliability estimation. In order to avoid higher biased samples, a mechanism to filter out

samples is necessary. In this research we use the Markov Chain Monte Carlo(MCMC)

method as the filter mechanism.

2.3.1 Backgrounds on Markov Chain

Let Xn denote the value of a random variable at time n, and let the state space refer to the range

of possible X value. A random variable follows a Markov process if its transition probabilities

between different values in the state space depends only on the random variable’s current state.

That is, we suppose that

Pr{Xn+1 = j|X0 = i0, .X1 = i1, .., Xn = i} = Pr{Xn+1 = j|Xn = i} (2.31)

In order words, the current state of the random variable is the only information about the past

to predict the future of a Markov random variable. The other information would not affect

the transition probability. Therefore, a Markov chain process can be defined by its transition

probabilities (or the transition kernel) Pij, which represents the probability that the process

in state i will transit into the state j as Equation (2.32)

Pij = Pr{i→ j} = Pr{Xn+1 = j|Xn = i} (2.32)

Since the probabilities are nonnegative and the process must make a transition into some state,

we have :

Pij ≥ 0, i, j ≥ 0;

∞∑
j=0

Pij = 1, i = 0, 1, . . .
(2.33)
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Let P denote the matrix of one-step transition probabilitiesPij, so that

P =



P00 P01 P02 · · ·
P10 P11 P12 · · ·

...
...

...

Pi0 Pi1 Pi2 · · ·
...

...
...


(2.34)

The one-step transition probabilities Pij has already been defined as Equation (2.32). Now, we

define the n-step transition probabilities P n
ij to be the probability that a process in state i will

be in state j after n additional transitions. That is,

P n
ij = Pr{Xn+k = j|Xk = i}, n ≥ 0, i, j ≥ 0 (2.35)

The Chapman-Kolmogorov equations provide a method for computing these n-step transition

probabilities. These equations are as Equation (2.36) shown

P n+m
ij =

∞∑
k=0

P n
ikP

m
kj for all n,m ≥ 0, all i, j (2.36)

and are most easily understood by noting that P n
ikP

m
kj represents the probability that starting

in i the process will go to state j in n+m transitions through a path which takes it into state

k at the nth transition. Hence, summing over all intermediate states k yields the probability

that the process will be in state j after n+m transitions. Formally, we have

P n+m
ij = Pr{xn+m = j|X0 = i}

=
∞∑
k=0

Pr{Xn+m = j,Xn = k|X0 = i}

=
∞∑
k=0

Pr{Xn+m = j|Xn = k,X0 = i}Pr{Xn = k|X0 = i}

=
∞∑
k=0

Pm
kjP

n
ik

(2.37)

Let P(n) denote the matrix of n-step transition probabilities P n
ij. Equation (2.36) then

states :

P(n+m) = P(n) ·P(m) (2.38)
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where the dot represents matrix multiplication. Hence, by induction

P(n) = P(n−1+1) = Pn−1 ·P = Pn (2.39)

That means that the n-step transition matrix may be obtained by multiplying the matrix P by

itself n times. If the limit of the Markov chain πj in Equation (2.40) exists and is independent

of i,

πj = lim
n→∞

P n
ij, j ≥ 0 (2.40)

then πj is the unique nonnegative solution of :

πj =
∞∑
i=0

πiPij, j ≥ 0,

∞∑
j=0

πj = 1

(2.41)

When the initial state is chosen according to the probabilities πj, j ≥ 0, the probability of being

in state j at any time n equals to πj. Therefore, πj, j ≥ 0, is called stationary probabilities.

Mathematically, we can state that if

Pr{X0 = j} = πj, j ≥ 0 (2.42)

then

Pr{Xn = j} = πj for all n, j ≥ 0 (2.43)

Equations (2.42) and (2.43) can be proved by induction, for if we suppose it true for n, then

the stationary probability can be derived by conditioning on the state at time n. That is,

Pr{Xn+1 = j} =
∑
i

Pr{Xn+1 = j|Xn = i}Pr{Xn = i}

=
∑
i

Pijπi by the induction hypothesis

= πj by Equation (2.41)

(2.44)

It can be shown that πj, the limiting probability that the process will be in state j at time n,

also equals the long-run proportion for time that the process will be in state j. Comprehensive

reviews of Markov chain can be found in [48–50].
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2.3.2 Markov Chain Monte Carlo by Metropolis-Hasting Algorithm

A Markov chain that generates samples randomly from previous samples is called a Markov

chain Monte Carlo (MCMC). MCMC ensure that the transition probabilities between sample

values are only function of the most recent sample values. The application of MCMC meth-

ods on different fields has shown great impact in recent decades. Statisticians, physicists and

engineers attempt to compute complex integrals by expressing them as expectations for some

distribution and then estimate this expectation by drawing samples from that distribution. To

solve this problem are the roots of MCMC methods. In this thesis, we randomly draw samples

from population, we want to construct a mechanism to filter out samples. The characteristic

of Markov chain that the future state is only related to current state let us do not to consid-

erate the past samples data. Therefore, MCMC is method that generates samples which is

quite close the situation in this thesis. Therefore, we use the MCMC to construct the filter

mechanism. In different MCMC methods, a considerable amount of attention is being devoted

to the Metropolis-Hastings(M-H) algorithm, which was developed by Metropolis, Rosenbluth,

Teller(1953), and subsequently generalized by Hastings(1970). Following, we will introduce the

MCMC by Metropolis-Hasting algorithm.

Metropolis-Hasting algorithm, can be used to generate a time reversible Markov chain

whose stationary probabilities are π(j), j = 1, 2, . . . . Suppose our goal is to samples from target

distribution π and very difficult to compute. Then we start with Metropolis-Hasting algorithm.

To begin, let Q be any specified Markov transition probability matrix on the integers, with

q(i, j) representing the row i column j element of Q. Now define a Markov chain {Xn, n ≥ 0}
as follows. When Xn = i, generate a random variable Y such that Pr{Y = j} = q(i, j), j =

1, 2, . . . . If Y = j, then set Xn+1 equal to to j with probability ak(i, j), which is referred as the

probability of move, and if the move is not made, the process again returns i as a value from

the stationary probability with probability 1− ak(i, j). Under these condition, the sequence of

states constitutes a Markov chain with transition probability Pi,j as

Pi,j = q(i, j)ak(i, j), if j 6= i

Pi,i = q(i, i) +
∑
k 6=i

q(i, k)(1− ak(i, k))
(2.45)

where q(i, j) is referred to as the proposal or candidate-generating distribution, represents that
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when a process is at the point i, the density generates a value y from q(i, j).

This Markov chain Xn will be time reversible and have stationary probabilities π(j) if

π(i)Pi,j = π(j)Pj,i if j 6= i

π(i)q(i, j)ak(i, j) = π(j)q(j, i)ak(j, i)
(2.46)

To show the reversibility for the Markov chain, let us set

ak(i, j) = min

(
π(j)q(j, i)

π(i)q(i, j)
, 1

)
(2.47)

then Equation (2.46) is also satisfied. If

ak(i, j) =
π(j)q(j, i)

π(i)q(i, j)
(2.48)

then ak(j, i) = 1 and Equation (2.46) follows, if ak(i, j) = 1 then :

ak(j, i) =
π(i)q(i, j)

π(j)q(j, i)
(2.49)

The probabilities ak(i, j) and ak(j, i) are thus introduced to ensure that π(j) satisfies the re-

versibility. Thus we have shown that in order for π(j) to be reversible, the probability of move

must be set to

ak(i, j) = min

(
π(j)q(j, i)

π(i)q(i, j)
, 1

)
, if π(i)q(i, j) > 0

= 1, otherwise.

(2.50)

We now summarize the Metropolis-Hasting algorithm in algorithmic form initialized with

arbitrary value s0 and suppose that our goal is to draw samples from target distribution π :

1. Repeat for j = 1, 2, . . . , N .

2. Using current sj value, draw a candidate point s∗ from some proposal distribution q(s1, s2),

which is the probability of returning a value of s2 given a previous value of s1. The

proposal distribution q is essentially arbitrary provided it can move around the entire

space.

3. Generate u from U(0, 1).
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4. Calculate the probability of move ak, which is also called acceptance probability.

ak(sj, s
∗) = min

(
π(s∗)q(s∗, sj)

π(sj)q(sj, s∗)
, 1

)
5. If u ≤ ak(sj, s

∗), set sj+1 = s∗, go to step 7.

6. Else, set sj+1 = sj, go to step 7.

7. Return the values {s1, s2, . . . , sN}.

A detailed review about Metropolis-Hasting algorithm is given by Chib and Greenberg [51].

2.3.3 MCMC Modification with Bootstrap

Section 2.3.2 describe the Metropolis-Hasting algorithm to draw samples from a known target

distribution π. However, in this work, we attempt to draw actual samples from population

which the underlying distribution is mostly unknown. The underlying distribution is the tar-

get distribution π in Metropolis-Hasting algorithm. To apply Metropolis-Hasting algorithm,

we need to know the target distribution π and proposal distribution q. Therefore, we must

construct these two distributions. The target distribution will be estimated directly by exist-

ing samples. The proposal distribution must be different from target distribution. Therefore,

we use Bootstrap concept to generate a different distribution as proposal distribution. The

details of the Bootstrap concept and two modifications of MCMC for sample filtering will be

introduced in this section.

Bootstrap concept

Based on Metropolis-Hasting algorithm the more similar the proposal distribution and tar-

get distribution, the higher convergent rate of Metropolis-Hasting algorithm. The bootstrap

method can provide an efficient way of estimating the distribution using the re-sampling tech-

nique [52,53]. Therefore, the bootstrap method is used to estimate the statistical parameter

of the proposal distribution q. Figure 2.4 illustrate the procedure of the bootstrap method.

The idea of bootstrap method is to generate many set of bootstrap sample by re-sampling with
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Initial sample, size n
(Unknown distribution)

Resampling with 
replacement, size n

   pb bootstraps

    ......

Estimation of statistical parameters of unknown distribution

Resampling with 
replacement, size n

Figure 2.4: The procedure of bootstrap

replacement from original samples. Let the size of the initial samples be n and the number of

bootstrap re-samplings be pb. Each resampling procedure selects n samples with replacement of

n original data. The estimate statistical parameters of unknown distribution by pb bootstraps.

If the acceptance probability always be one, we can not use the Metropolis-Hasting al-

gorithm to construct sample data filter. Therefore, we use Bootstrap method to generate a

proposal distribution which different from directly estimate from original samples to avoid the

acceptance probability in Equation (2.47) of MCMC always be one.

MCMC of Accepting the Current Sample

The accuracy of a reliability estimation would be affected by biased samples. Therefore, we

need to construct a filter mechanism to ensure a fair judgment. The acceptance probability of

Metropolis-Hasting algorithm in MCMC is referred to as the probability of the move of a new

sample.

In this work, we want to use the acceptance probability as a judgement about biased

samples. If we want to use the concept of acceptance probability, the target distribution
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and generating distribution must be known. We obtain the target distribution by use the

statistic toolbox in commercial tool Matlab of existing samples. And the proposal distribution

is obtained by re-sampling technique of Bootstrap method.

Samples

Given

Probability Distribution 

Proposal 
Distribution

Resample & 
Estimate

distribution of 
pseudo-samples 

by bootstrap

Target 
Distribution

Markov Chain Monte 
Carlo Filtering 

Draw a sample 
s∗

Accept s∗as 
additional sample

Yes

Estimate 
distribution of 

current samples

No

Calculate 
acceptance 
probability  

ak  

Generate 
random 

uniform value
u 

Use  current 
sample sc  as 

additional sample
u < ak

Figure 2.5: The procedure of MCMC of accepting the current sample

Figure 2.5 illustrates the procedure about the sample data filter via MCMC of accepting

the current sample. We summarize the procedure in algorithmic form as following:

1. Estimate statistical parameters of the underlying distribution by directly using existing

samples as target distribution π.

2. Resample and estimate the statistical parameters by bootstrap method as the proposal

distribution q.

3. Draw a sample s∗ from population, calculate the acceptance probability ak via the current
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sample sc.

ak(sc, s
∗) = min

(
π(s∗)q(s∗, sc)

π(sc)q(sc, s∗)
, 1

)
4. Generate u from U(0, 1).

5. If u ≤ ak(sc, s
∗), then accept sample s∗ as additional sample.

6. Else, set current sample sc as additional sample.

MCMC of Accepting An Additional Sample

The original concept of Metropolis-Hasting use the current sample as the new sample when the

rejection occurring. We are afraid that if the current sample is also a biased sample, which out

of inspection, the repeatedly usage about the biased sample would have significant effect on

reliability estimation. Therefore, we draw an additional sample when there are rejected samples

of MCMC until there are an acceptable sample exists.

Figure 2.6 illustrates the procedure about the sample data filter via MCMC of accepting

an additional sample. We summarize the procedure in algorithmic form as following:

1. Estimate statistical parameters of the underlying distribution by directly using existing

samples as target distribution π.

2. Resample and estimate the statistical parameters by bootstrap method as the proposal

distribution q.

3. Draw a sample s∗ from population, calculate the acceptance probability ak via the current

sample sc.

ak(sc, s
∗) = min

(
π(s∗)q(s∗, sc)

π(sc)q(sc, s∗)
, 1

)
4. Generate u from U(0, 1).

5. If u ≤ ak(sc, s
∗), then accept sample s∗ as additional sample.

6. Else, turn to step 3.
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Figure 2.6: The procedure of MCMC of accepting an additional sample
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Chapter 3 Optimal Sampling Augmentation

and Resource Allocation

In practical engineering applications, the underlying distribution about a specific uncertainty

is not known. Limited samples from measurements or experimental results are generally the

only available information of the uncertainty. In Chapter 2, we have described the fundamental

concepts of using these samples to infer the distribution. In this section, we emphasis on

how to cast additional samples to aid engineering decision-making in a reliability-based design

optimization with limited samples. In this chapter, we introduce the optimization model of

RBDO with inadequate uncertainty data, optimal sampling augmentation for design, and then

the resource allocation.

3.1 RBDO with Inadequate Uncertainty Data

In this section, we focus on assist engineers to make decision in a reliability-based design

optimization with limited samples. First, we will introduce reliability-based design optimization

(RBDO), discuss about the activity of reliability constraint with inadequate uncertainty data,

and construct the generalize optimization model of RBDO with inadequate uncertainty data.

3.1.1 Introduction of RBDO

In engineering design, the traditional deterministic optimization model has been successfully

applied to systematically reduce the cost and improve quality. However, the existence of uncer-

tainties in physical quantities such as manufacturing tolerances, material properties, and loads

requires a reliability-based approach to design optimization [54,55]. Optimal design problems

which consider uncertainties as random variables or parameters are formulated as problems

with probabilistic constraints. Eq.(3.1) is a generalized single-objective probabilistic formula-

tion with random design variables D, random parameters P, deterministic design variables d

and deterministic parameters p. The objective f is a function of deterministic quantities and
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the mean values of all random quantities in the formulation and K is the constraint set. The

deterministic feasible space of d subject to g(d) ≤ 0 is F .

min
µD,d

f(µD,µP,d,p)

Pr[gj(D,P,d,p) > 0] ≤ Pf,j ∀j ∈ K (3.1)

Constraints with random variables and/or parameters are reformulated such that the prob-

ability of constraint gj violation is less than or equal to an acceptable failure limit Pf,j. De-

terministic constraints (i.e., constraints that are not functions of any random quantities) are

considered in the probabilistic form as a special case with the failure probabilities Pf,j being

0. Equality constraints are not implicitly removed using the methods in [56]. This formulation

is commonly referred to as reliability-based design optimization (RBDO) formulation in the

literature [2].

Pr[g(D,P) > 0] =

∫
· · ·
∫

g(D,P)>0

fDP(d,p)dddp (3.2)

Calculating probabilistic constraints in Eq.(3.1) requires a multiple integration over the failure

domain as shown in Eq.(3.2) where fDP is the joint probability density function (PDF) of all

random uncertainties. However, the lack of joint PDF in most engineering problems and the

difficulty in solving the multiple integration makes Eq.(3.2) impractical. Several methods have

been proposed to improve the efficiency and accuracy of calculating constraint probabilities.

Among them the first and the second order reliability methods (FORM and SORM) are most

commonly used in engineering disciplines [3,57–59].

3.1.2 Activity of Bayesian Reliability Constraints

One of the underlying assumptions of Eq.(3.2) is the availability of the distribution function.

In practice, a proper model of a random uncertain event requires a large amount of data and

a proper selection of distribution type. The cost of generating these data could potentially

be too high for the industry with limited resources and time to production. Therefore albeit

with a large quantity of available literature on probabilistic optimization method, the industrial

applications with actual products are rare.

In this work, instead of assuming distributions for uncertainties, we include uncertainty in
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the form of limited samples. Then we estimate the reliability via Bayesian inference as shown

in Chapter 2. In this case, the RBDO problem becomes RBDO with inadequate uncertainty

data.

The main different between the standard RBDO problems and the RBDO with inadequate

uncertainty data is the evaluation of reliability constraint. Reliability constraint with inade-

quate uncertainty data is evaluated by Bayesian theory. In the section 2.2.4, we illustrated an

example to show how to obtain the reliability distribution from samples. That example also

demonstrated how to estimate reliability of a function with samples. Inadequate uncertainty

data in the form of samples also exist when we develop a new product. We need to consider

the reliability of our product on design stage, however, sometimes the underlying distributions

of uncertain quantities are not available; instead, a few samples are the best we can hope for.

The design problem with samples becomes a reliability-based design optimization with inade-

quate uncertainty data. Reliability constraints in RBDO need to be reformulated to account

for samples. In the following, we will define Bayesian reliability constraint with samples and

then study the activity of this constraint.

In the RBDO community, reliability constraint can be written as

Pr[g ≤ 0] ≥ reliability target (3.3)

Because of the inadequate uncertainty data of parameters, the probability Pr[g ≤ 0], which

referred as reliability, is not a fixed value, instead, it becomes a distribution R about the relia-

bility value. Therefore, the constraint requires that reliability R being larger than a reliability

target Rt becomes a probability problem. Since it becomes a probability problem, we define

the confidence range as Equation (2.27). Use the same concept as RBDO, the probability of

reliability larger than the reliability target should reach a target confidence level as confidence

range target CRt. Then the final constraint formulation becomes

Pr [Pr[g ≤ 0] ≥ Rt] ≥ CRt

= Pr [R ≥ Rt] ≥ CRt

(3.4)

We define this constraint as Bayesian reliability constraint. In the remaining thesis, we will use

Bayesian reliability constraint instead of Equation (3.3) as the reliability constraint for RBDO

with inadequate uncertainty data.
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Figure 3.1: Equivalence constraint expression in percentile form

A Bayesian reliability constraint includes two probability concepts: (1) In standard opti-

mization, a constraint is defined as active if removing the constraint changes the location of the

optimum. (2) Mostly these active inequality constraints are strictly satisfied as equality when

active. The activity of a Bayesian reliability constraint needs to be defined. Similar concepts

should also apply to Bayesian reliability constraints. Let us look at a simple example of a

random variable X. The constraint is defined as that the probability of X being larger than a

fixed value a should be larger than Rt as Figure 3.1

Pr[X > a] ≥ Rt (3.5)

The equivalent expression is that Rt × 100 percentile of X is larger than a:

X(1−Rt)×100% ≥ a (3.6)

When the equivalence is set up, X(1−Rt)×100% = a, we say this constraint is “ active”.

Using the concept of equivalent probability constraint expression as in Equation (3.6),

Equation (3.4) can also be expressed equivalently as

R(1−CRt)×100% ≥ Rt (3.7)

We define R(1−CRt)×100% as Bayesian reliability RB in the remaining text to help us to use a

fixed value to clarify the relationship between reliability constraint and confidence range and

compare with reliability without inadequate uncertainty data.

We say that when RB = Rt, the constraint is active. However, strictly satisfying as an

equality is only the extends criterion of being an active constraint, we need also check whether
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the removal of a constraint will alter the location of the optimum. The importance of each

constraint will be examined by these two definition of activities in this thesis.

3.1.3 Generalized Optimization Model of RBDO with Inadequate

Uncertainty Data

Before constructing our optimization model, the form of design variables needs to be clarified.

In this thesis, our focus is on uncertainties that could exist in the form distributions or in the

form of available samples. In terms of design framework, uncertainties could be our design

parameters or design variables. However, throughout this thesis, we consider uncertainties in

design variables only be in the form of distributions. That said sample-type uncertainties are

only in parameters.

Design variables are the quantities a designer pick to alter when updating a design. The

values of these design variables change in a design process. Therefore samples taken based on

previous uncertainty design variables can not be used to represent the the design variables that

are about to change. In the literature, Gunawan et al. assumed a fixed Gaussian distribution

with the mean being design variables, as shown in Figure 3.2 [17]; Picheny et al. used the

bootstrap method to obtain a pseudo-distribution about their design variables [16]. Although

they could include uncertainties of samples in design variables, their samples are converted into

distributions of the variables instead of being used to calculate the reliability of the constraints.

On the other hand, our uncertainties of samples in design parameters could better capture the

i i+1 Variable

Density translation

Figure 3.2: Schematic diagram about shift mean value of design variables
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true engineering practice of parameters such as Young’s modulus, road irregularity coefficient,

oil density, and etc that we would not to design it but the characteristic of these parameters

would affect the design decision.

In order to help designer use our optimal sampling augmentation process, we define the

generalized model then the designer can utilize our sampling augmentation process easily. The

generalized optimization model can be expressed as

min
µDu ,d

f(µDu ,d,Ps,µPu ,p)

s.t gi = gi(d,p) ≤ 0

gR = Pr[gR(Du,d,Pu,p) ≤ 0] ≥ Rt

gB = Pr
[
Pr[gB(Du,d,Pu,Ps,p) ≤ 0] ≥ Rt

]
≥ CRt

(3.8)

where

d : deterministic design variables

Du : uncertain design variables known for distributions

p : deterministic parameters

Pu : uncertain parameters known for distributions

Ps : uncertain parameters known for samples

g : deterministic constraint

gR : reliability constraints that constraint gR need to reach reliability target

gB : Bayesian reliability constraints that constraint gB need to satisfy the reliability target

and confidence range target

Above model is the generalized reliability-based design optimization with inadequate uncer-

tainty data. We need to classify the uncertainties types into parameters and design variables.

The uncertain variables only exist in form of distributions as previous assertion. And the un-

certain parameters could be classify into known for distributions and samples. The Bayesian

reliability constraint RB is used to evaluate the reliability with inadequate uncertainty data. If

Bayesian reliability constraint is removed, then the problem becomes RBDO problem.
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3.2 Optimal Sampling Augmentation for Design

In this section, the proposed optimal sampling augmentation process will be illustrated. The

purpose of sampling augmentation will also be explained.

3.2.1 Purpose of Sampling Augmentation

As discussed in Section 2.2.3 that concept of “sample combination” is made more clear and

reasonable in practice than the concept of a set of all uncertainties. We cannot say that two sets

of uncertain quantities with respect to two parameters from different measurement environment

to be a set of samples because we do not know which one sample should be matched to another

one.

As shown in Figure 2.2, with the increase of the number of samples, the confidence levels

inferred will be higher. Therefore, in order to achieve a more creditable inference about an

uncertainty, sample size need to reach a certain level. However, the resources to provide infor-

mation about the uncertainties is limited. An effective reliability inference and optimization

scheme should be provided under this limited situation. In existing research, the differentia-

tions between the importance and cost associated with each uncertainty cannot be revealed

due to the fact that samples exist in a group, rather than appear individually. As a result, we

can not measure one uncertain parameter to increase number of samples when inferring the

population. All uncertainties need to be measured. However, in our opinion, samples appear

individually, resulting in “ sample combination ”. One measurement means one sample. Each

samples is combined to form a set of sample combinations. The set of all possible uncertainty

could also be obtained by the concept of sample combination. Therefore, we can compare the

importance of each uncertainties.

The additional measurements can only be given on the critical uncertainties instead of

measuring a set of whole uncertainties. We propose a sampling augmentation process that add

samples based on their importance to reduce the cost of uncertainty measurements. Redundant

measurements, the samples that do not add value in population inference, can be avoided.

Resource can be allocated much more efficiently and effectively.
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3.2.2 Sampling Augmentation Process

In our proposed approach, Bayesian binomial inference is used to obtain the reliability distribu-

tion with inadequate uncertainty data. Biased samples are filtered via MCMC with bootstrap.

Figure 3.3 illustrates the flowchart of the proposed approach in dealing with uncertainties that

are available as either samples or distributions. At the beginning, a reliability target for each

constraint is given. An acceptable confidence range target is also given for Bayesian reliability

constraints. The first major step in the flowchart is to identify two types of uncertainties,
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No
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Reliability Target
Confidence Target
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Uncertainty Models
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Measurement& 

MCMC for Sample 
Filtering

Figure 3.3: Flowchart of proposed sampling augmentation for design

namely the inadequate uncertainty data and the data with known distributions. We only con-

sider uncertain design variables in the form of distributions. Uncertain parameters could be in

distributions and in samples.

Optimization Model Update with Confidence Bound

Because the confidence bound will be updated with the increment of sample combinations,

which is defined as confidence bound limit (CBL), the generalized optimization model demon-
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strate in Section 3.1.3 is changed with confidence bound limit as the following :

min
µDu ,d

f(µDu ,d,Ps,Pu,p)

s.t gi = gi(d,p) ≤ 0

gR = Pr[gR(Du,d,Pu,p) ≤ 0] ≥ Rt

gB = Pr
[
Pr[gB(Du,d,Pu,Ps,p) ≤ 0] ≥ Rt

]
≥ CB

(3.9)

where the generalized optimization model alters with the change of confidence bound (CB). As

shown in Section 2.2.2, the confidence range of a Bayesian reliability estimation is limited by the

number of sample combinations. Therefore, after clarifying the uncertainties, we then evaluate

the confidence bound of this number of sample combinations. This confidence bound is the

maximal confidence range with the reliability target provided given existing number of sample

combinations. The initial confidence bound is defined by the extreme state current samples

could achieve. However, this extreme situation of confidence bound restricts the feasibility of

constraint in optimization. If designers believe that the extreme situation of confidence bound

would affect the feasibility of constraints, a certain degree of discount (Ds) on confidence bound

is permitted. Then the discounted confidence bound (CB) is expressed as

CB = DS(1− ΦBeta(Rt, Nc + 1, 1)) (3.10)

where Ds = 1 means there is no relaxation on Bayesian reliability constraint. The relaxation

means that we first allow the Bayesian reliability constraint could not achieve the confidence

bound but give a quite closer design point. The relaxation level on Bayesian reliability constraint

is decided by designer. With the sampling augmentation, the confidence bound limit would

update with the increment of number of sample combinations. However, if previous sampling

augmentation iteration obtained an infeasible design, the confidence bound limit would not be

updated with the increment of number of sample combinations.

There is one thing needs to be noticed that the confidence bound limit becomes nearly

100% with large number of sample combinations. In other words, the optimum should satisfy a

high confidence level (say 99.9%) to provide Bayesian reliability larger than the target reliability

value with large sample combinations.
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MCMC for Sample Filtering

In practical engineering applications, limited samples are used to infer the population about an

uncertainty. Although increasing sample size will improve the inference results, the accuracy of

reliability estimation would also be affected by the quality of the measurements. Highly biased

undesirable measurements would increase the number of design iterations required. A filter

mechanism that effectively removes biased samples is necessary.

The proposed method filter mechanism includes : an MCMC of accepting the current sam-

ple and MCMC of accepting an additional sample. The MCMC can be divided into two parts :

One part is the probability distributions, as shown in Figure 3.4, about the target distribution

and proposal distribution. In order to give the filter judgment on the same standard, this

two probability distributions are obtained from the initial samples. Another part is Markov

chain Monte Carlo filtering. This part is used to examine the acceptance of additional samples.

These two filter are shown in Figure 3.5. Figure 3.5(a) is about the filter mechanism of MCMC

of accepting the current sample and Figure 3.5(b) is about the filter mechanism of MCMC of

accepting an additional sample. These two filter mechanism will be used to filter out the biased

samples. The detailed descriptions are as shown in Section 2.3.3.
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Figure 3.4: MCMC previous stage: probability distribution
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Figure 3.5: Two MCMC filtering mechanism

Algorithmic Steps of Sampling Augmentation for Design

Updating of the optimization model with confidence bound limit is the major steps in Figure

3.3. The flowchart of general sampling augmentation is as shown in Figure 3.3. The first step is

to provide a reliability target, and an acceptable confidence range target for each constraint with

uncertainties. Then, classify the uncertainties into the inadequate uncertainty data (samples)

and data with known distributions. As shown in Section 2.2.3, we use the sample combinations

to infer reliability distribution, therefore, we evaluate the number of sample combinations of

these inadequate uncertainty data. Because the confidence range of a Bayesian reliability

estimation is limited by the number of sample combinations, we use the confidence bound

limit instead of confidence range target in the optimization model. Therefore, we evaluate and
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update the confidence bound limit of this number of sample combination in the optimization

model. Then performing the reliability-based design optimization with inadequate uncertainty

data to help us to find a better design under this number of sample combination. If there is

feasible solution exists, then we check that whether the confidence range target is reached, the

sampling augmentation will be terminated, if not, then we do resource allocation to find an

important uncertainty. If there is no feasible solution exists, execute the resource allocation

to give an important uncertainty. The detailed description about the resource allocation will

be introduced in next section. Then we take an additional sample measurement then filter

out the biased sample via MCMC sample data filter as Section 2.3.3 and 2.3.3 shown. The

sampling augmentation will be terminated when the optimum’s confidence range satisfying the

confidence range target, otherwise, the process will continued to iterate. The general sampling

augmentation can be expressed in algorithmic form as following :

Step 1 Provide the reliability target value of each constraint with uncertainties. And the

confidence range target of Bayesian reliability constraint is also given.

Step 2 Classify the uncertainties into inadequate uncertainty data and data known for distri-

butions. Evaluate the number of sample combinations of inadequate uncertainty data.

Step 3 Evaluate and update the confidence bound limit of this number of sample combinations

and update the optimization model. Perform reliability-based design optimization with

inadequate uncertainty data.

Step 4 Examine the existence of feasible solution.

• Feasible solutions exist : Examine the confidence range of this feasible design with

confidence range target. If the confidence range target is reached, then the sampling

augmentation process terminate, otherwise, go to step 5.

• No feasible solutions exist : Go to step 5.

Step 5 Execute the resource allocation to give an important uncertainty. Go to step 6.

Step 6 Give an additional sample measurement and filter the biased sample. Go to step 7.

Step 7 The sampling augmentation process for design terminates when the optimal solution

satisfying the confidence range target, otherwise, the process would continued iterates.
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3.3 Resource Allocation Process

Measurements of samples can be costly. Unnecessary redundant measurements can be avoided

by deliberated casting samples only when they are important. In Section 3.2, sampling augmen-

tation and separating of each uncertainty help reducing the number of measurements required.

Once additional sample are inevitable, in this work, measurements of uncertainties are added

only when they are “ important”. Additional measurements on critical constraints with respect

to uncertainties in the form of discrete sample are necessary. In what follows, two techniques

of critically adding samples will be introduced. The proposed resource allocation scheme would

then be illustrated.

3.3.1 Sensitivity Analysis

The constraint with the lowest confidence range in the generalized optimization model is the

critical constraint. With this critical constraint, the sensitivity analysis is used to decide which

uncertain parameter is the most important one with highest sensitivity.

Sensitivity analysis assesses the impacts in the change of a certain parameter on the overall

system. Additional measurements would be given on critical constraints with respect to the

most important uncertain parameters. However, critical constraints usually have more than

one uncertain parameter. Therefore, we use sensitivity analysis to help us making decisions on

which parameters are the key drivers of the critical constraints.

Let a constraint be g, with respect to two parameters y, and z. The sensitivity of g with

respect to each parameter value is the derivative with respect to each parameter. Define the

sensitivity at the value of (ȳ, z̄) as

sy =| ∂g
∂y
|y=ȳ

sz =| ∂g
∂z
|z=z̄

(3.11)

where sy is defined as sensitivity of parameter y, same as sz. In this thesis, we evaluate the

sensitivity of an uncertainty at the mean as its sensitivity to the function g.
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3.3.2 Scheme of Resource Allocation

With proposed methods of sensitivity and MCMC for sample filtering, the overall resource

allocation scheme is as shown in Figure 3.6. The sensitivity analysis is used to decide which

uncertain parameter is more important when the critical constraint with respect to more than

one uncertain parameters.

scheme.pdf

Critical constraint

Given

Is the Ps being 
sampled in previous  

iteration

No
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No
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The highest 
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Figure 3.6: Flowchart of resource allocation scheme

First, we capture the constraint with lowest confidence range in generalized optimization

model as the critical constraint. And we check if there is only one uncertain parameter known for

samples (Ps) with respect to the critical constraint. If there are only one uncertain parameter

with respect to the critical constraint, we recognize this parameter is the only influential uncer-
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tain quantities, then regard this uncertainty as important uncertainty. Otherwise, if there are

more than one uncertain parameters known for samples with respect to the critical constraint,

we first check if the same uncertain parameter be draw in previous sampling augmentation iter-

ation. If the same critical uncertain parameter exists, we make the assertion that this uncertain

parameter is quite influential so we must give more measurement to help us make inference.

On the contrary, if there is no same drawn uncertain parameter, the sensitivity analysis is used

to decide which uncertain parameter is the most importance one with the highest sensitivity.

When the important uncertain parameter with respect to the critical constraint is decided, the

resource allocation process terminates.

The algorithmic form of resource allocation is provided as following:

Step 1 Identify the constraint with the lowest confidence range as critical constraint.

Step 2 Examine if there is only one uncertain parameter known for samples with respect to

the critical constraint, if yes, then turn to step 5, otherwise to step 3.

Step 3 Check if the same uncertain parameter has with respect to the critical constraint, then

turn to step 5, else turn to step 4.

Step 4 Perform sensitivity analysis to find which uncertain parameters with the highest sen-

sitivity, then go to step 5.

Step 5 Set the obtained uncertain parameter as important uncertainty.
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Chapter 4 Case Studies in Single Level

Systems

Two case studies are used to show the effectiveness of the proposed approach in Chapter 3,

which uses inadequate samples to assist reliability-based design. The optimization is solved by

fmincon solver (sequential quadratic programming) in commercial tool Matlab. In this section,

we focus on problems that is formulated as an all-in-one system. In Chapter 5, we will extend

the concept to hierarchical complex problems. An all-in-one system is one where all objectives

and constraints are handled in a single problem. Following, a mathematical example and passive

vehicle suspension design are used to demonstrate the proposed approach in Section 4.1 and

4.2.

4.1 A Mathematical Example

A mathematical problem is used in this section to show the overall approach proposed. In com-

parison, we also study the same problem with different uncertainty levels, namely, deterministic

problem with no uncertainty, RBDO problem with uncertainties known for distributions and

RBDO problem with inadequate uncertainty data (uncertainties known for samples). The op-

timal results of these three design problems will be compared in following section. The optimal

sampling augmentation for RBDO with inadequate uncertainty data will be demonstrated with

three situations of different MCM filter mechanisms as without MCMC, MCMC of accepting

current sample and MCMC of accepting an additional sample. These three types of sampling

augmentation are compared with different sample size in Section 4.1.3
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4.1.1 Optimization Model of Mathematical Example

Deterministic Optimization Model

min
x
f = x

s.t. g1 = 1− xp2
1/20 ≤ 0

g2 = 1− (x+ p1 − 5)2/30 ≤ 0

g3 = 1− 80/(p2
1 + 8p2 − 6.5) ≤ 0

g4 = 1− (xp2 + p2
2)/20 ≤ 0

g5 = 1− (x+ p1 + p2 − 6)2/30− (−x+ p1 − p2 − 11)2/120 ≤ 0

6.5 ≤ x ≤ 8

(4.1)

where parameters p1 = −8.2 and p2 = 2.2.

RBDO Model

min
x
f = x

s.t. g1 = Pr[1− xP1
2/20 ≤ 0] ≥ Rt

g2 = Pr[1− (x+ P1 − 5)2/30 ≤ 0] ≥ Rt

g3 = Pr[1− 80/(P1
2 + 8P2 − 6.5) ≤ 0] ≥ Rt

g4 = Pr[1− (xP2 + P2
2)/20 ≤ 0] ≥ Rt

g5 = Pr[1− (x+ P1 + P2 − 6)2/30− (−x+ P1 −P2 − 11)2/120 ≤ 0] ≥ Rt

6.5 ≤ x ≤ 8

where

 P1 ∼ N(−8.2, 0.082)

P2 ∼ N(2.2, 0.022)

(4.2)

The reliability target is given as Rt = 0.85.
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RBDO Model with Inadequate Uncertainty Data

min
x
f = x

s.t. g1 = Pr[Pr[1− xP1
2/20 ≤ 0] ≥ Rt] ≥ CB

g2 = Pr[Pr[1− (x+ P1 − 5)2/30 ≤ 0] ≥ Rt] ≥ CB

g3 = Pr[Pr[1− 80/(P1
2 + 8P2 − 6.5) ≤ 0] ≥ Rt] ≥ CB

g4 = Pr[Pr[1− (xP2 + P2
2)/20 ≤ 0] ≥ Rt] ≥ CB

g5 = Pr[Pr[1− (x+ P1 + P2 − 6)2/30− (−x+ P1 −P2 − 11)2/120 ≤ 0] ≥ Rt] ≥ CB

6.5 ≤ x ≤ 8

(4.3)

The confidence bound (CB) will be updated with the increment of samples. The reliability

target is given as Rt = 0.85. The confidence range target is given as CRt = 0.9. The constraints’

confidence bound limit of optimum must satisfy the confidence range target. The initial number

of samples of each inadequate uncertainty data is five. The initial samples are given in Table

4.1. Table 4.2 shows the relationship between parameters in form of samples and constraints.

Table 4.1: 10 available initial data of P1 and P2 in Equation (4.3)

P1 P2

-8.26284520912262 2.20222327815620

-8.29582956598186 2.17863273276113

-8.30545622577585 2.19175031781491

-8.24754085360083 2.22269605270197

-8.13573721029070 2.16495104270072

Table 4.2: Parameters respect to the constraints of the mathematical example

g1 g2 g3 g4 g5

P1 X X X X

P2 X X X
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4.1.2 Optimal Results and Discussions

The results of deterministic design, RBDO, and RBDO with inadequate uncertainty data would

be compared. We will use Monte Carlo Simulation to acquire the reliability value of the optimal

points, which referred as MCS reliability ( denoted as RMCS) to represent as true reliability.

About the RBDO with inadequate uncertainty data, the Bayesian reliability RB defined in

Section 3.1.2 is used to represent the estimation value of the reliability distribution.

With intuitive, the lack of information would make the optimal results become conser-

vative. Therefore, RBDO with inadequate uncertainty data should be the most conservative

one, then RBDO be the second one and deterministic design be the last one. Table 4.3 shows

the comparison of deterministic, RBDO, and RBDO with inadequate uncertainty data. The

deduction could be proved in Table 4.3. The RBDO with inadequate uncertainty data is indeed

the most conservative one about the function value f in accordance of intuitive. In proposed

sampling augmentation process, the resource allocation is considered by the critical constraint.

As Table 4.3 show, the constraints g3 and g4 might be the critical constraints due to the lower

reliability on RBDO optimum. As the result of MCMC of accepting current sample, the con-

straint g3 is indeed the critical constraint. And the optimum of sampling augmentation with

MCMC is quite close to the optimum of RBDO. The estimation of reliability by samples is

denoted as Bayesian reliability RB. Table 4.3 shows that the Bayesian reliability RB is quite

close to the MCS reliability RMCS. Therefore, we can say that the sampling augmentation

process help us to use critically limited samples to obtain the credible reliability-based design.

Table 4.3: Comparison the results between RBDO, deterministic, and MCMC of mathematical

example

Sampling Augmentation (accepting

current sample)

RBDO Deterministic

xopt 6.565137 6.5 6.5

f 6.565137 6.5 6.5

RB (0.960, 0.960, 0.862, 0.960, 0.960)
(1,1,0.894,0.869,1) (1,1,0.894,0.869,1)

RMCS (1,1,0.894,0.961,1)

Active constraint g3 None None
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In Section 2.3.3, two types of MCMC filter mechanisms are proposed. The difference

between these two filters is that when a new sample is rejected, one replicate the previous sample

as a new one which the other one take a completely new measurement sample. Therefore, we

have three scenarios in our study. Scenario 1 is sampling augmentation with MCMC of accepting

current sample which means that when rejected sample occurs, the current sample be accepted

as an additional sample. Scenario 2 is sampling augmentation with MCMC of accepting an

additional sample which means that when rejected sample occurs, the filter mechanism will

continue still an acceptable samples appear. Scenario 3 is sampling augmentation without

MCMC filter mechanism. In the following, these three scenarios would be compared to show

the effectiveness of MCMC filter. The comparison of these three scenarios is shown in Table

4.4.

Table 4.4: Comparison optimal results of three types of sampling augmentation of mathematical

example

Scenario 1 Scenario 2 Scenario 3

xopt 6.565137 6.565130 6.565139

f 6.565137 6.565130 6.565139

RB (0.96,0.96,0.86,0.96,0.96) (0.96,0.96,0.86,0.96,0.96) (0.96,0.96,0.85,0.96,0.96)

RMCS (1,1,0.894,0.961,1) (1,1,0.894,0.961,1) (1,1,0.894,0.961,1)

Confidence range (1,1,0.937,1,1) (1,1,0.937,1,1) (1,1,0.911,1,1)

Adding procedure 6 on P1 6 on P1(actually 8 samples) 7 on P1

No.rejected sample 2 2 N/A

No. combination 55 55 60

Active constraint g3 g3 g3

Different sampling augmentation scheme obtain similar optimal results. Both the reliability

estimation (RB) and confidence range(CR) reach the target. The estimation of reliability (RB)

of three scenarios are quite close to RMCS reliability of overall constraints. Under this situation,

we can say that Bayesian binomial inference provide a credible estimation about the reliability

distribution. Both sampling augmentation with MCMC filter mechanism reject two biased

samples and use 6 additional samples on P1 in optimization model. The overall sample size

of scenarios 2 is 8 (6+2) samples. As shown in Table 4.4, number of sample combinations of
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both two sampling augmentation with MCMC (scenario 1 and 2) is less than of which without

MCMC (scenario 3). Sampling augmentation without MCMC obtain the optimum requires

more sampling iterations.

Confidence range is the likelihood probability of the estimation of reliability distribution

being greater than a reliability target which is limited by the number of sample combinations.

Figure 4.1 shows the confidence range of constraints g3. With increment of number of sample

combinations, the confidence should be increased. However, biased samples could undermine

the confidence range value without MCMC. The 4th iteration in Figure4.1 comparing with

and without MCMC shows a big difference in confidence range calculation. The biased sample

would also baffle the search of the optimal point. Overall, biased samples affect the convergency

of the RBDO with inadequate uncertainty data. From the results, the MCMC filter mechanism

could assist the convergent rate of sampling augmentation for design as Figure 4.1 shown and

use fewer samples to inference the reliability distribution.
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Figure 4.1: Confidence range of g3 of iterations
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4.1.3 Comparison of Sampling Augmentation with Different Sample

Size

The effect of MCMC filter mechanism on the same number of additional samples will be demon-

strated in this section. Bayesian reliability values and corresponding confidence ranges on the

critical constraint g3 with different sample size in the mathematical example in Equation (4.3)

will be studied. The number of rejected samples is also taken into account as the number of

additional samples. Figure 4.2 shows the comparison of MCMC of accepting current sample,

MCMC of accepting an additional sample and without MCMC on optimal point of RBDO.

As shown in Figure 4.2(a), we can see the confidence range of g3 without MCMC fluctuates

up and down due to the effects of biased samples. Biased sample makes the confidence range

of g3 without MCMC unstable. Search directions in optimization also become inconsistent due

to the fluctuations of confidence ranges. Then the convergency of optimization becomes slow.

From the results, we can assert that the variation of confidence range value would make the

search of optimum become difficult. The Bayesian reliability of g3 without MCMC would no

longer larger than reliability target (Rt = 0.85) due to the biased samples as shown in Figure

4.2(b). Therefore, we assert that both MCMC filter mechanisms would assist the effect to avoid

biased samples and improve the convergency of optimization.
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4.2 Passive Vehicle Suspension Design

In this section, a passive vehicle suspension design is used to show the overall approach pro-

posed. we will construct the optimization models about passive vehicle suspension design. In

comparison, we also study the same problem with different uncertainty levels, namely, determin-

istic problem with no uncertainty, RBDO problem with uncertainties known for distributions

and RBDO problem with inadequate uncertainty data (uncertainties known for samples). The

optimal results of these three design problems will be compared in following section. The opti-

mal sampling augmentation for RBDO with inadequate uncertainty data will be demonstrated

with three situations of different MCM filter mechanisms as without MCMC, MCMC of ac-

cepting current sample and MCMC of accepting an additional sample. These three types of

sampling augmentation are compared with different sample size in Section 4.2.3.

4.2.1 Optimization Model of Passive Vehicle Suspension Design

The optimal design of a passive vehicle suspension, shown in Figure 4.3, is studied following

Lu et al. [60]. The objective is to minimize the mean square value of the vertical vibration

acceleration of the vehicle body, which satisfies the following constraints: a lower bound on the

road-holding ability of the vehicle (g1); an upper bound on the rolling angle (g2); a lower bound

on the suspension’s dynamic displacement to avoid bumper hitting, the so-called rattle-space

constraint (g3); and a lower bound on tire stiffness because tire life is an increasing function of

tire stiffness (g4).

Suspension stiffness c (kg/cm), tire stiffness ck (kg/cm) , and damping coefficient k (kg/cm/sec)

are the design variables. The problem parameters are provided in Table 4.5.

In comparison, we study the same problem with different uncertainty levels, namely, deter-

ministic problem with no uncertainty, RBDO problem with uncertainties known for distribu-

tions and RBDO problem with inadequate uncertainty data (uncertainties known for samples).

Following, we construct the optimization models for these three design problems.
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With !X=7 and reliability of 95% the algorithm found the
optimum in 25 iterations. The values of Ea=0.001 and !=0.01
were used. Constraints g1 and g3 are identified as quadratic at the
probabilistic optimum and SORM is used in forming constraints
g1! and g3!.

6 Concluding Remarks
The proposed SLP algorithm combined the single loop concept

of Liang et al. !25" with the filter-based method of Fletcher et al.
!28" resulting in a good balance between accuracy and efficiency.
The accuracy of SORM and the efficiency of FORM are preserved
by letting the algorithm select between these two methods, as
appropriate. Ultimately the accuracy is not known except as it
may be estimated through Monte Carlo Simulation. For most
practical problems, SORM would provide sufficient accuracy.
When constraints are not ! active or when constraints are locally
linear, FORM is used to create linear subproblems, otherwise
SORM is used. In addition to the FORM/SORM switch, the algo-
rithm provides an adaptive initial trust region to improve effi-
ciency. Although the algorithm reduces the trust region by half
gradually, depending on the problem structure, we observed that
without calculating an appropriate trust region and just selecting
an arbitrary one will slow down convergence.

In Examples 1 and 2, due to the unbounded subproblems, an
appropriate "0 can reduce the iterations required before the next
trial point is acceptable. In contrast, Example 3 is more sensitive
to a smaller trust region. Constraints in Example 3 provide bounds
for the trial points, thus a large trust region does not serve as an
additional constraint. However, a small trust region can restrict the
step length and slow down convergence. Good convergence re-
sults are obtained even for an interior optimum, as in Example 2.
For Example 3, comparison of this SLP algorithm with SORA and
the single loop method shows SLP to have a good balance be-
tween accuracy and efficiency. Examples 1 and 2 have nonlinear
constraints but FORM is used throughout, because either the con-
straints are not active or the local curvature is flat with respect to
the input variability. If variability is increased, meaning that the
degree of uncertainty is larger, the algorithm will eventually use
SORM instead of FORM.

Global convergence of the original deterministic SLP-filter al-
gorithm is not affected by the proposed modifications. SORM

requires more computations than FORM and accuracy improve-
ment might seem limited from the examples. Depending on the
application, accuracy in evaluating constraint probabilities may or
may not be the main concern. In applications with small variations
and less focus on accuracy, designers can simply increase the
value of Ea such that only FORM is used. In applications where
local curvatures are unknown a priori, the range of a given input
variability can produce large errors in evaluating constraint prob-
abilities. The algorithm provides an additional mechanism to deal
with a situation where the optimum lies on a large curvature range
of the function where FORM would yield an inaccurate estimate.
One should also note that the algorithm is based on the assump-
tion that the local curvature is no higher than quadratic. Higher
nonlinearities will result in less accurate results.

We ignored the presence of random parameters in order to sim-
plify the presentation. If random parameters exist, the analysis and
the algorithm can be extended with minor modifications. One
could also consider parameters as variables with values con-
strained to be constants. Extension to non-normal correlated ran-
dom variables requires further investigation. Early study shows
that for non-normal random variables, since the “equivalent nor-
mal” conversion changes depending on the nominal values, a lin-
ear constraint may turn out to be highly nonlinear after conversion
to a deterministic equivalent one !37". The validity of assumptions
for convergence will need to be revisited.

Numerical noise generated by simulation-based models might
affect convergence speed due to inaccurate gradient calculation.
As shown in Fig. 12, noise in the simulation model results in
inaccurate gradient estimations at points b, c and d. Applying
finite differences with appropriate interval length can result in a
better gradient calculation as at point a. While too small a finite
difference interval considers noise as the actual model behavior,
too large an interval ignores the curvatures of the model. An ap-
propriate selection of interval size requires understanding the level
of noise as well as the function behavior.

Results from the illustrative examples provide a limited dem-
onstration and further testing with problems of realistic engineer-
ing complexity is desirable. As mentioned in the introduction, the
original motivation for seeking a SLP-based approach to this
problem was motivated by the expectation that such an approach
will lead to new and better coordination schemes in multilevel,
hierarchical probabilistic NLP problems. Realization of this po-
tential remains to be pursued.

Fig. 11 Example 4: Passive vehicle suspension

Fig. 12 Model noise
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Figure 4.3: Passive vehicle suspension

Deterministic Optimization Model

min
c,ck,k

¯̈
Z2 = (πAV/m2)(ckk + (M +m)c2k−1)

s.t.

g1 =

(
πAVm

b0g2k

)((
ck

M +m
− c

M

)2

+
c2

Mm
+

ckk
2

mM2

)
− 1 ≤ 0

g2 = 7.6394(4000(Mg)−1.5c− 1)− 1 ≤ 0

g3 = 0.5(Mg)1/2(k2ckc
−1(M +m)−1 + c)−1/2 − 1 ≤ 0

g4 = ((M +m)g)0.877c−1
k − 1 ≤ 0

(4.4)
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Table 4.5: Suspension problem parameters

Dynamic load coefficient, b0 0.27

Vehicle velocity, V (m/s) 10

Gravity acceleration, g (cm/s2) 981

Road irregularity coefficient, A (cm2 cycle/m) 1

Sprung mass, M (kg/cm/s2) 3.2

Unsprung mass, m (kg/cm/s2) 0.8

RBDO Model

min
c,ck,k

¯̈
Z2 = (πAV/m2)(ckk + (M +m)c2k−1)

s.t.

g1 = Pr

[(
πAVm

b0g2k

)((
ck

M + m
− c

M

)2

+
c2

Mm
+

ckk
2

mM2

)
− 1 ≤ 0

]
≥ Rt

g2 = Pr[7.6394(4000(Mg)−1.5c− 1)− 1 ≤ 0] ≥ Rt

g3 = Pr[0.5(Mg)1/2(k2ckc
−1(M + m)−1 + c)−1/2 − 1 ≤ 0] ≥ Rt

g4 = Pr[((M + m)g)0.877c−1
k − 1 ≤ 0] ≥ Rt

(4.5)

The reliability target is given as Rt = 0.9. The road irregularity A, sprung mass M and

unsprung mass m are set to be uncertain parameters. The distributions are followed Normal

distribution as

where


A ∼ N(1, 0.032)

M ∼ N(3.2, 0.032)

m ∼ N(0.8, 0.0052)
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RBDO Model with Inadequate Uncertainty Data

min
c,ck,k

¯̈
Z2 = (πAV/m2)(ckk + (M +m)c2k−1)

s.t.

g1 = Pr

[
Pr

[(
πAVm

b0g2k

)((
ck

M + m
− c

M

)2

+
c2

Mm
+

ckk
2

mM2

)
− 1 ≤ 0

]
≥ Rt

]
≥ CB

g2 = Pr[Pr[7.6394(4000(Mg)−1.5c− 1)− 1 ≤ 0] ≥ Rt] ≥ CB

g3 = Pr[Pr[0.5(Mg)1/2(k2ckc
−1(M + m)−1 + c)−1/2 − 1 ≤ 0] ≥ Rt] ≥ CB

g4 = Pr[Pr[((M + m)g)0.877c−1
k − 1 ≤ 0] ≥ Rt] ≥ CB

(4.6)

The road irregularity A, sprung mass M and unsprung mass m are set to be uncertain param-

eters of samples. The confidence bound (CB) will be updated with the increment of samples.

The reliability target is given as Rt = 0.9. The confidence range target is given as CRt = 0.9.

The constraints’ confidence bound limit of optimum must satisfy the confidence range tar-

get.The initial number of samples of each inadequate uncertainty data is five. The origin

samples are given in Table 4.6. Table 4.7 shows the relationship between parameters in form

of samples and constraints.

Table 4.6: 15 samples as initial uncertainty data of passive vehicle suspension design in Equation

(4.6)

A M m

1.02021096089625 3.18716771531861 0.806528115517652

0.979926610138818 3.18261880578225 0.804919847656519

0.987990318980960 3.22777905144734 0.793743068217506

0.979845927183428 3.20016531224747 0.799101231046973

1.01726887049749 3.18096527441576 0.796282967758515

4.2.2 Optimization Result and Discussions

The results of deterministic design, RBDO, and RBDO with inadequate uncertainty data would

be compared. We will use Monte Carlo Simulation to acquire the reliability value of the optimal
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Table 4.7: Parameters respect to the constraints of the passive vehicle suspension design

g1 g2 g3 g4

A X

M X X X X

m X X X

points, which referred as MCS reliability ( denoted as RMCS) to represent as true reliability.

About the RBDO with inadequate uncertainty data, the Bayesian reliability RB defined in

section 3.1.2 is used to represent the estimation value of the reliability distribution.

Table 4.8 shows the comparison of deterministic, RBDO, RBDO with inadequate uncer-

tainty data. Deterministic design is assumed that there are no uncertainties, the optimum

should be more affirmatory than which with uncertainties. RBDO with inadequate uncertainty

data would be the most conservative of these three design optimization problem. Because the

reliability in RBDO with inadequate uncertainty data is also a uncertain quantities, the reli-

ability estimation should confirm certain degree of confidence level (which means confidence

range in this thesis). In order to confirm the confidence range of reliability distribution, the

optimum becomes conservative in RBDO with inadequate uncertainty data. As shown in Ta-

ble 4.8, the RBDO with inadequate uncertainty data is the most conservative one about the

mean square value of the vertical vibration acceleration
¯̈
Z2. Although RBDO with inadequate

uncertainty data is the most conservative one, it still gives a optimal value closer to which

of RBDO. In practical engineering community, the characteristics of underlying distribution

cannot be known, what we can do is that only draw samples from population and infer the

underlying distribution. We use 106 pseudo-samples to simulate the underlying distribution in

RBDO problem. If we want to assume the underlying distribution well-known, we must draw

106 samples from population. However, measuring samples is costly, the resources to provide

information about the uncertainties is limited. Optimal sampling augmentation with MCMC

of accepting current sample only uses 20 samples(number of initial samples = 15, number of

additional samples =5) to provide an acceptable optimal results. Summarizing, sampling aug-

mentation process help us to use a small amount of samples to give a creditable reliability-base

design.
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Table 4.8: Comparison the results between RBDO, deterministic, and MCMC of Passive Vehicle

Suspension Design Optimization

Sampling Augmentation

(accepting current sample)

RBDO Deterministic

[c, ck, k]opt [393.2, 1437, 20.97] [386.5,1469,20.77] [379.8,1426,20.77]
¯̈
Z2 2915154 2911614 2819585

RB (0.991, 0.991, 0.963, 0.963)
(0.997,0.997,0.906,1) (0.984,1,0.0625,1)

RMCS (1,1,0.874,0.899)

Confidence range (1,1,1,1) N/A N/A

Adding procedure 5 on M N/A N/A

No.rejected sample 2 N/A N/A

No. combination 250 N/A N/A

Active constraint g3, g4 g3 g2, g3, g4

In Section 2.3.3, two types of MCMC filter mechanisms are proposed. The difference

between these two filters is that when a new sample is rejected, one replicate the previous sample

as a new one which the other one take a completely new measurement sample. Therefore, we

have three scenarios in our study. Scenario 1 is sampling augmentation with MCMC of accepting

current sample which means that when rejected sample occurs, the current sample be accepted

as an additional sample. Scenario 2 is sampling augmentation with MCMC of accepting an

additional sample which means that when rejected sample occurs, the filter mechanism will

continue still an acceptable samples appear. Scenario 3 is sampling augmentation without

MCMC filter mechanism. In the following, these three scenarios would be compared to show

the effectiveness of MCMC filter. The comparison of these three scenarios is shown in Table

4.9.

As Section 4.1.3 shwon, we assert that the MCMC filter would help the convergent rate

of optimization. Sampling augmentation without MCMC cannot give a feasible solution by

50 additional samples as Table 4.9 shown. Because the biased samples would let the Bayesian

reliability constraint become unstable, the confidence range of reliability distribution would

fluctuate due to biased samples. MCMC filter provides a stable confidence range of reliability

estimation by filtering biased samples, it makes the searching direction would not be affected
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Table 4.9: Comparison optimal results of three types of sampling augmentation of Passive

Vehicle Suspension Design

Scenario 1 Scenario 2 Scenario 3

[c, ck, k]opt [393.2, 1437, 20.97] [393.2, 1437, 20.97]

Diverge by 50 samples

¯̈
Z2 2915154 2915154

RB (0.991, 0.991, 0.963, 0.963) (0.991,0.991,0.963,0.963)

RMCS (1,1,0.874,0.899) (1,1,0.874,0.899)

Confidence range (1,1,1,1) (1,1,1,1)

Adding procedure 5 on M 5 on M(actually 9 samples)

No.rejected sample 2 4

No. combination 250 250

Active constraint g3, g4 g3, g4

by fluctuated confidence range values in optimization.

Scenario 1 and 2 give the same feasible solutions. Scenario 1 and 2 use five additional

samples, but actually scenario 2 uses nine samples. Scenario 2 rejects two more samples than

which of scenario 1. Actually, scenario 1 replicate the previous sample as a new one when a

new sample is rejected. We can see that scenario 1 use fewer samples than which scenario 2

uses. Therefore, it is made the assertion that sampling augmentation with MCMC of accepting

current sample (scenario 1) is the best one in three sampling augmentation processes on the

aspect of amount of samples.

4.2.3 Comparison of MCMC and without MCMC in Passive Vehicle

Suspension Design with different sample size

The effect of MCMC filter mechanism on the same number of additional samples will be demon-

strated in this section. Bayesian reliability values and corresponding confidence ranges on the

critical constraint g3 with different sample size in the mathematical example in Equation (4.6)

will be studied. The number of rejected samples is also taken into account as the number of

additional samples. Figure 4.4 shows the comparison of MCMC of accepting current sample,
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MCMC of accepting an additional sample and without MCMC on optimal point of RBDO

in Table 4.9. Figure 4.5 shows the comparison on optimum of sampling augmentation with

MCMC filter in Table 4.9.
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Figure 4.4: Comparison three sampling augmentation process with different sample size on

RBDO optimal point
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Figure 4.5: Comparison three sampling augmentation process with different sample size on

MCMC(accept as current) optimal point

As shown in Figure 4.4(a) and 4.5(a), we can see the confidence range of g3 without MCMC

are almost near 0 that means there are no probability to get reliability higher than 90%. As

shown in Figure 4.4(b) and 4.5(b), we can see the reliability of g3 without MCMC fluctuates due

to the effects of biased samples. The variation of constraint value would make the direction of

searching optimum always changed in different iterations. Then the convergency of optimization

becomes slow or divergent. As Figure 4.4 and 4.5 shown, both two MCMC filters have higher
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stability than which without MCMC. Therefore, we can make assertion that the MCMC filter

mechanisms give the assist to sampling augmentation to avoid biased samples and improve the

convergency of optimization.

4.3 Summary

We measure additional samples to help us to comprehend the importance of different uncer-

tainties by sampling augmentation during optimal iterations. Therefore, we can only use lower

fund to obtain the measurements of samples. Measurement is expensive, so resource alloca-

tion is necessary. We only measure additional samples when the corresponding uncertainty

is important. However, measurements sometimes will go wrong, the filter mechanism MCMC

is used to avoid higher biased samples. In this two case studies, the sampling augmentation

with MCMC provides a creditable optimum which is quite closer to the optimum of RBDO by

limited samples. Both two filter mechanisms give significant effect on filtering out biased sam-

ples, which assisting the convergency of optimization. The reliability estimation by Bayesian

binomial inference is quite close to the MCS reliability, we can assert that the concept of sam-

ple combinations help us to reveal all possible situations that each sample be matched. We

also examine the influence of biased samples by comparing the filter mechanism with different

sample size. We see the phenomena that the biased samples would affect the consistency of

constraint values. Use the filter mechanism MCMC let us avoid the inconsistency of constraint

values then refrain the divergency of optimization.
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Chapter 5 Case Studies in Complex

Multilevel System

Design problem is always solved by the all-in-one (AiO) strategy that consider the overall design

all together. However, design of modern engineering product becomes a complex system design

problem. Furthermore, in practical engineering community, no single group could handle a

complex design problem. The designers are always distributed over different design groups that

independently make the proper design decisions [61]. The reliability design with inadequate

uncertainty data is also existing in complex systems. In order to confirm that the proposed

sampling augmentation and resource allocation for design can also be applied to the complex

system design, we would demonstrate passive vehicle design same as in Section 4.2 with the

introduction of design details of spring and damper.

5.1 Introduction to Analytical Target Cascading

The complex system design can be solved using decomposition strategies. The original AiO

problem is partitioned into several subproblems. The goal of these strategies is to obtain the

same solution as which with AiO formulations. Many different strategies are proposed such as

Optimization by Linear Decomposition (OLD) [62], Quasi-separable Subsystem Decomposition

(QSD) [63], Bi-Level Integrated Synthesis (BLISS) [64] and Collaborative Optimization (CO)

[65]. Such methods are collectively referred to as multidisciplinary design optimization (MOD)

methods. Another famous method to solve the complex design problem is Analytical Target

Cascading (ATC) [66]. In this work, we will focus on analytical target cascading method.

Analytical target cascading is a model-based, multi-level, hierarchical optimization method

for system design. Design targets from higher level subproblems are cascaded down to the lower

level subproblems. ATC provides the multi-level formulation. Several variants of ATC have

been proposed, we will focus on one type of these variants. First, the decomposition procedure

for ATC is presented. Then the selected variant of ATC, augmented Lagrangian method for

ATC [67] is presented.
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5.1.1 ATC Problem Decomposition

ATC strategy provides a hierarchic multi-level formulation of the complex optimization prob-

lem. ATC formalizes the process of propagating top-level targets throughout the design hierar-

chy. An all-in-one design problem can be decomposed into several element as Figure 5.1. The

top-level element handle the overall system design and each lower level elements are presented

a subsystem or a component of its parent element. The elements are coupled by response vari-

ables and targets from parent. The optimization model of a subsystem is formulated by the

local variables, response variables to parent, and targets to children which can minimize the

inconsistency of response variables. The response variables would be iteratively rebalanced up

to higher level element to achieve the consistency.

        

                P21 P22

P11

                        P31 P32 P33

��	��� i

�������� j

Figure 5.1: Scheme of hierarchic structure

The mathematical definition of the j-th subproblem at the i-level, namely, subsystem Pij
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Subproblem

Pij

fij

xij

gij , hij

ri
ij

ri+1
(i+1)j ti(i+1)j

ti−1
ij

: local variables

: local objective

: local constraints

Input Output

From parent

From children To children

To parent

Figure 5.2: Subproblem flow in the ATC formulation

in Figure 5.2, is defined as follows.

min
x̄

(fij(x̄ij) + ||ti−1
ij − riij||+ ||ti(i+1)j − ri+1

(i+1)j||)

subject to

gij(x̄ij) ≤ 0

hij(x̄ij) = 0

where

x̄ij = [xij riij ti(i+1)j]

(5.1)

Here ti−1
ij are the targets coming from the parent subproblem at level i − 1, riij are the

responses to be sent to the parent subproblem, ti(i+1)j are the targets to the children subproblems

and ri+1
(i+1)j are the responses from the children subproblems. The linking variables ti−1

ij and

ri+1
(i+1)j from parent and children, respectively, are considered as parameters in the subproblem

Pij.
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5.1.2 Augmented Lagrangian Method for ATC

In previous section, the mathematical model of ATC strategy is presented. Tosserams et al. [67]

propose the augmented Lagrangian method to improve the convergent rate of the ATC strategy.

This method use the augmented Lagrangian penalty function πAL as Equation (5.2)

πAL = vij(r
i
ij − ri−1

ij ) + ||wij ◦ (riij − ri−1
ij )||22 (5.2)

where the vij is a vector of Lagrangian multiplier parameters, the wij is a vector of penalty

weights and the ◦ symbol is used to denote a term-by-term multiplication of vectors such that

[a1, a2, . . . , an] ◦ [b1, b2, . . . , bn] = [a1b1, a2b2, . . . , anbn].

Then Equation (5.1) becomes as following

min
x̄

(fij(x̄ij) + πAL)

subject to

gij(x̄ij) ≤ 0

hij(x̄ij) = 0

where

x̄ij = [xij riij ti(i+1)j]

(5.3)

The augmented Lagrangian method for ATC is used to solve the multi-levels system design

problem in the remaining text, and the comprehensive review of the augmented Lagrangian

method for ATC is found in Reference [67].

5.2 Passive Vehicle Suspension Design in Complex Sys-

tem

Same as Section 4.2, the optimal design of a passive vehicle suspension, shown in Figure 5.3, is

studied following Lu et al. [60]. The problem only evaluates the tire stiffness, spring stiffness

and damping coefficient, in this section, we also design the geometry of the spring and damper

to achieve the spring stiffness and damping coefficient to minimize the mean square value of the
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vertical vibration acceleration of the vehicle body. In this section, the optimization models of

all-in-one system of passive vehicle suspension design will be introduced in Section 5.2.1 then

the optimization models of multi-level system design will be formulated in Section 5.2.2, and

the optimal results would be discussed in Section 5.2.3.

5.2.1 All in One System of Passive Vehicle Suspension Design

In this section, we will construct the optimization model including the geometry design of

spring and damper in all-in-one system. deterministic design, RBDO, RBDO with inadequate

uncertainty data about the passive suspension design

The optimal design of a passive vehicle suspension, shown in Figure 5.3, is studied following

Lu et al. [60]. The objective is to minimize the mean square value of the vertical vibration

acceleration of the vehicle body, which satisfies the following constraints: a lower bound on the

road-holding ability of the vehicle (g1); an upper bound on the rolling angle (g2); a lower bound

on the suspension’s dynamic displacement to avoid bumper hitting, the so-called rattle-space

constraint (g3); a lower bound on tire stiffness because tire life is an increasing function of

tire stiffness (g4) ; an upper bound on shear stress in the spring bar (g5); a constraint confirm

the laminar flow through the orifice (g6); a layout constraint (g7); and an upper bound on

admissible orifice diameter. The constraints g5 to g8 are related to the geometry of spring and

damper as Figure 5.4 shown.

We study the same problem with different uncertainty level, namely, deterministic problem

with no uncertainty, RBDO with uncertainties known for distributions and RBDO problem with

inadequate uncertainty data. Following, the optimization models of these three design problem

will be constructed.
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With !X=7 and reliability of 95% the algorithm found the
optimum in 25 iterations. The values of Ea=0.001 and !=0.01
were used. Constraints g1 and g3 are identified as quadratic at the
probabilistic optimum and SORM is used in forming constraints
g1! and g3!.

6 Concluding Remarks
The proposed SLP algorithm combined the single loop concept

of Liang et al. !25" with the filter-based method of Fletcher et al.
!28" resulting in a good balance between accuracy and efficiency.
The accuracy of SORM and the efficiency of FORM are preserved
by letting the algorithm select between these two methods, as
appropriate. Ultimately the accuracy is not known except as it
may be estimated through Monte Carlo Simulation. For most
practical problems, SORM would provide sufficient accuracy.
When constraints are not ! active or when constraints are locally
linear, FORM is used to create linear subproblems, otherwise
SORM is used. In addition to the FORM/SORM switch, the algo-
rithm provides an adaptive initial trust region to improve effi-
ciency. Although the algorithm reduces the trust region by half
gradually, depending on the problem structure, we observed that
without calculating an appropriate trust region and just selecting
an arbitrary one will slow down convergence.

In Examples 1 and 2, due to the unbounded subproblems, an
appropriate "0 can reduce the iterations required before the next
trial point is acceptable. In contrast, Example 3 is more sensitive
to a smaller trust region. Constraints in Example 3 provide bounds
for the trial points, thus a large trust region does not serve as an
additional constraint. However, a small trust region can restrict the
step length and slow down convergence. Good convergence re-
sults are obtained even for an interior optimum, as in Example 2.
For Example 3, comparison of this SLP algorithm with SORA and
the single loop method shows SLP to have a good balance be-
tween accuracy and efficiency. Examples 1 and 2 have nonlinear
constraints but FORM is used throughout, because either the con-
straints are not active or the local curvature is flat with respect to
the input variability. If variability is increased, meaning that the
degree of uncertainty is larger, the algorithm will eventually use
SORM instead of FORM.

Global convergence of the original deterministic SLP-filter al-
gorithm is not affected by the proposed modifications. SORM

requires more computations than FORM and accuracy improve-
ment might seem limited from the examples. Depending on the
application, accuracy in evaluating constraint probabilities may or
may not be the main concern. In applications with small variations
and less focus on accuracy, designers can simply increase the
value of Ea such that only FORM is used. In applications where
local curvatures are unknown a priori, the range of a given input
variability can produce large errors in evaluating constraint prob-
abilities. The algorithm provides an additional mechanism to deal
with a situation where the optimum lies on a large curvature range
of the function where FORM would yield an inaccurate estimate.
One should also note that the algorithm is based on the assump-
tion that the local curvature is no higher than quadratic. Higher
nonlinearities will result in less accurate results.

We ignored the presence of random parameters in order to sim-
plify the presentation. If random parameters exist, the analysis and
the algorithm can be extended with minor modifications. One
could also consider parameters as variables with values con-
strained to be constants. Extension to non-normal correlated ran-
dom variables requires further investigation. Early study shows
that for non-normal random variables, since the “equivalent nor-
mal” conversion changes depending on the nominal values, a lin-
ear constraint may turn out to be highly nonlinear after conversion
to a deterministic equivalent one !37". The validity of assumptions
for convergence will need to be revisited.

Numerical noise generated by simulation-based models might
affect convergence speed due to inaccurate gradient calculation.
As shown in Fig. 12, noise in the simulation model results in
inaccurate gradient estimations at points b, c and d. Applying
finite differences with appropriate interval length can result in a
better gradient calculation as at point a. While too small a finite
difference interval considers noise as the actual model behavior,
too large an interval ignores the curvatures of the model. An ap-
propriate selection of interval size requires understanding the level
of noise as well as the function behavior.

Results from the illustrative examples provide a limited dem-
onstration and further testing with problems of realistic engineer-
ing complexity is desirable. As mentioned in the introduction, the
original motivation for seeking a SLP-based approach to this
problem was motivated by the expectation that such an approach
will lead to new and better coordination schemes in multilevel,
hierarchical probabilistic NLP problems. Realization of this po-
tential remains to be pursued.

Fig. 11 Example 4: Passive vehicle suspension

Fig. 12 Model noise
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Figure 5.3: Passive vehicle suspension

Deterministic Optimization Model

min
ck,d,D,ic,dP ,dS ,dO

¯̈
Z2 = (πAV/m2)(ckk + (M +m)c2k−1)

g1 =

(
πAVm

b0g2k

)((
ck

M +m
− c

M

)2

+
c2

Mm
+

ckk
2

mM2

)
− 1 ≤ 0

g2 = 7.6394(4000(Mg)−1.5c− 1)− 1 ≤ 0

g3 = 0.5(Mg)1/2(k2ckc
−1(M +m)−1 + c)−1/2 − 1 ≤ 0

g4 = ((M +m)g)0.877c−1
k − 1 ≤ 0

g5 = τspring − τadm ≤ 0

g6 = Re− 5000 ≤ 0

g7 = dP − (D − d) ≤ 0

g8 = dO −
dP − dS

2
≤ 0

(5.4)

The problem parameters are provided in Table 5.1.

The spring stiffness c and damping coefficient k can be expressed as function of spring and
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k2 r2

m2

m1
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x2

x1

r2

Fig. 8 Quarter vehicle model

sufficiently accurate to describe the suspension vertical
dynamics (Mitschke 1990). The discomfort DC and road
holding RH indices are defined as the standard deviations
of the sprung mass acceleration and contact vertical force
respectively while the vehicle is traveling on an uneven road
surface at a given speed v. These indices can be expressed
as analytical functions of the suspension stiffness k2 and
damping r2 (Gobbi and Mastinu 2001).

DC = σ (ẍ2) = DC (r2, k2)

RH = σ (k1 (x1 − ξ1)) = RH (r2, k2)
(21)

The spring stiffness and the damping coefficient can be
expressed as functions of the spring and damper geometry,
see Fig. 9. Details can be found in (Guarneri et al. 2009).

k2 = k2 (d, D, ic)

r2 = r2 (dP , dR, dO)
(22)

d

D

dP

dO

dS

y

v=dy/dt

d

P

dO

dS

Fig. 9 Spring and damper

Table 8 Suspension design constraints

Constraint function Meaning

g1 Maximum shear stress in the spring bar

g2 Maximum spring deflection

g3 Layout constraint

g4 Maximum admissible orifice diameter

g5 Laminar flow through the orifice

Here d is the wire diameter, D is the coil diameter, ic is
the number of coils, dP , dR and dO are the diameter of the
piston, rod and flow orifice respectively (see Fig. 9).

The AiO formulation is

min
x

([
DC (x) RH (x)

])

x = [
xs xd

]

xs = [
d D ic

]
xd = [

dP dR dO
]

g1 (xs) = τspring (xs) − τadm

g2 (xs) = y (x) − ymax (xs)

g3 (x) = dP − (D − d)

g4 (xd) = dO − (dP − dS)

2
g5 (x) = Re − 5000

(23)

where the vector x collects all design variables, those related
to the spring being xs and to the damper xd . The constraints
functions are described in Table 8.

Top level – Suspension system

Local x11=[ ]

Target t21: [r2 d D | k2 r2 d D] 

Response r11: [ ]

h1 = r2- r2 = t21(1)- t21(5)

h2 = d-d = t21(2)- t21(6)

h3 = D-D = = t21(3)- t21(7)

Damper

Local x22=[dP dR dO]

Target t32: [ ] 

Response r22: [r2 d D]

h1 = r2-r2(x22)

r2 d D

Spring

Local x23=[ic]

Target t33: [ ] 

Response r23: [k2 r2 d D]

h1 = k2-k2(ic , d, D) 

k2 r2 d D

Top le Suspension system

Local x11=[ ]

Target t21: [r2 d D | k2 r2 d D] 

Response r11: [ ]

h1 = r2- r2 = t21(1)- t21(5)

h2 = d-d = t21(2)- t21(6)

h3 = D-D = = t21(3)- t21(7)

Damper

Local x22=[dP dR dO]

Target t32: [ ] 

Response r22: [r2 d D]

h1 = r2-r2(x22)

r2 d D

Spring

Local x23=[ic]

Target t33: [ ] 

Response r23: [k2 r2 d D]

h1 = k2-k2(ic , d, D) 

k2 r2 d D

Fig. 10 ATC formulation of the suspension system optimization

Figure 5.4: Spring and damper

damper geometry as Figure 5.4. The formula is shown in Equation (5.5) to (5.6)

c =
d4G

8D3ic
(5.5)

k = 128ν
(d2
P − d2

S)/4)2

d4
OLt

(5.6)

where d is the wire diameter, D is the coil diameter, ic is the number of coils, dP and dS are

the diameter of the piston and shaft respectively (see Figure 5.4). The spring stiffness c and

damper coefficient should be regarded as two equality constraints in Equation (5.4).

The constraint g5 is an upper bound of shear stress in the spring bar, the shear stress of

spring can be expressed as

τspring =
8FD

πd3
+

4F

πd2
(5.7)

where F is the weight of the vehicle.

The constraint g6 is used to confirm that the oil is maintain the laminar flow through the

orifice, and the Reynolds number (Re) in g6 can be formulated as

Re =
ρoilvoildO

ν
(5.8)
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Table 5.1: Suspension problem parameters

Dynamic load coefficient, b0 0.27

Vehicle velocity, V (m/s) 10

Gravity acceleration, g (cm/s2) 981

Road irregularity coefficient, A (cm2 cycle/m) 1

Sprung mass, M (kg/cm · s2) 3.2

Unsprung mass, m (kg/cm/s2) 0.8

Oil velocity, voil (cm/s) 100

Oil dynamic viscosity, ν (Pas) 0.16

Oil density, ρoil (kg/ m3) 900

Admissible shear stress, τadm (N/mm2) 660

RBDO Model

min
c,ck,k

¯̈
Z2 = (πAV/m2)(ckk + (M +m)c2k−1)

x = [d,D, ic, dP , dS, dO, ck]

g1 = Pr

[(
πAVm

b0g2k

)((
ck

M + m
− c

M

)2

+
c2

Mm
+

ckk
2

mM2

)
− 1 ≤ 0

]
≥ Rt

g2 = Pr[7.6394(4000(Mg)−1.5c− 1)− 1 ≤ 0] ≥ Rt

g3 = Pr[0.5(Mg)1/2(k2ckc
−1(M + m)−1 + c)−1/2 − 1 ≤ 0] ≥ Rt

g4 = Pr[((M + m)g)0.877c−1
k − 1 ≤ 0] ≥ Rt

g5 = Pr[τspring − τadm ≤ 0] ≥ Rt

g6 = Pr[Re− 5000 ≤ 0] ≥ Rt

g7 = dP − (D − d) ≤ 0

g8 = dO −
dP − dS

2
≤ 0

h1 : k = 128ν
(d2
P − d2

S)/4)2

d4
OLt

h2 : c =
d4G

8D3ic

(5.9)

The constraint g1 to constraint g6 are reliability constraints. The reliability target is given
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as Rt = 0.9. The underlying distributions of uncertain parameters are followed Gaussian

distribution as shown in Table 5.2.

Table 5.2: Uncertainty of passive vehicle suspension design in complex system

A A ∼ N(1, 0.032) cm2/(cycle ·m)

M M ∼ N(3.2, 0.032) Kg · sec2/cm

m m ∼ N(0.8, 0.0052) Kg · sec2/cm

ν ν ∼ N(0.16, 0.00162) Pas

ρoil ρ ∼ N(900, 92) (kg/m3)

RBDO Model with Inadequate Uncertainty Data

When the underlying distributions of uncertainties are unknown, the RBDO problem becomes

RBDO with inadequate uncertainty data, then Equation (5.9) can be transformed as Equation

(5.10). The initial samples are given in Table 5.3. Table 5.4 shows the relationship between

parameters in form of samples and constraints.

Table 5.3: Available initial data of uncertainties in Equation 5.10

A 1.00174959561666 0.982775981128189

M 3.20505014964935 3.24547705458722

m 0.795651191446309 0.799194677228595

ν 0.160761013223448 0.159443262871706

ρoil 898.419085163724 903.216378191180
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min
c,ck,k

¯̈
Z2 = (πAV/m2)(ckk + (M +m)c2k−1)

x = [d,D, ic, dP , dS, dO, ck]

g1 = Pr

[
Pr

[(
πAVm

b0g2k

)((
ck

M + m
− c

M

)2

+
c2

Mm
+

ckk
2

mM2

)
− 1 ≤ 0

]
≥ Rt

]
≥ CB

g2 = Pr[Pr[7.6394(4000(Mg)−1.5c− 1)− 1 ≤ 0] ≥ Rt] ≥ CB

g3 = Pr[Pr[0.5(Mg)1/2(k2ckc
−1(M + m)−1 + c)−1/2 − 1 ≤ 0] ≥ Rt] ≥ CB

g4 = Pr[Pr[((M + m)g)0.877c−1
k − 1 ≤ 0] ≥ Rt] ≥ CB

g5 = Pr[Pr[τspring − τadm ≤ 0] ≥ Rt] ≥ CB

g6 = Pr[Pr[Re− 5000 ≤ 0] ≥ Rt] ≥ CB

g7 = dP − (D − d) ≤ 0

g8 = dO −
dP − dS

2
≤ 0

h1 : k = 128ν
(d2
P − d2

S)/4)2

d4
OLt

h2 : c =
d4G

8D3ic

(5.10)

The confidence bound (CB) will be updated with the increment of samples. The reliability

target is given as Rt = 0.9. The confidence range target is given as CRt = 0.9. The constraints’

confidence bound limit of optimum must satisfy the confidence range target. Table 5.4 shows

the relationship between parameters in form of samples and constraints.

Table 5.4: Parameters respect to the constraints of the passive vehicle suspension design prob-

lem

g1 g2 g3 g4 g5 g6

A X

M X X X X X

m X X X X

ν X

ρoil X
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5.2.2 Multilevel Passive Vehicle Suspension Design

In this section, we will partition the passive vehicle suspension design (Section 5.2.1) into multi-

level system design. If the equality constraints can be considered as analysis models, then we

assume the c, k are the responses from analysis model h1, h2. Therefore, the Equation (5.4),

(5.9) and (5.10) are partitioned as shown in Figure 5.5. Here the top level is the system-level of

passive vehicle suspension design (denote as PV ) and the lower level is the subsystem level about

the geometry design of damper (denote as PD) and spring (denote as PS). The system-level

problem is evaluated the mean square value of the vertical vibration acceleration of the vehicle

body. The subsystem level design problem calculate the response from each corresponding

analysis model h1 and h2, and they share the linking variables. Input of system-level design

problem is tire stiffness (ck), while the responses from lower level system are damping coefficient

(k) and spring stiffness (c). Inputs of subsystem level design problems are the number of coils ic,

the diameter of the piston dP and the diameter of the shaft dS, the responses c, k returned from

the geometry of spring and damper, the linking variables between the subsystem level design

problem are wire diameter d and coil diameter D. Categorization of responses and variables is

given in Table 5.5. Only the value of c, k, d,D are passed up and cascaded down between the

system and subsystem level design problems.

Following, we only construct the multi-level optimization model of RBDO with inadequate

uncertainty data, the deterministic optimization model and RBDO model can be constructed

by analogy.

Table 5.5: Summary of responses and variables of passive vehicle suspension design

Responses Local

variables

Linking

variables

Responses

from lower

level

Uncertainties

Suspension System N/A ck N/A c, k A,M,m

Damper k dP , dS, dO d,D N/A ν, ρoil

Spring c ic d,D N/A M,m

The system-level design problem (passive vehicle suspension design problem) can be ex-
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Passive vehicle 
suspension system

Spring system Damper system

k

d, D

c

k

2

c

2

With !X=7 and reliability of 95% the algorithm found the
optimum in 25 iterations. The values of Ea=0.001 and !=0.01
were used. Constraints g1 and g3 are identified as quadratic at the
probabilistic optimum and SORM is used in forming constraints
g1! and g3!.

6 Concluding Remarks
The proposed SLP algorithm combined the single loop concept

of Liang et al. !25" with the filter-based method of Fletcher et al.
!28" resulting in a good balance between accuracy and efficiency.
The accuracy of SORM and the efficiency of FORM are preserved
by letting the algorithm select between these two methods, as
appropriate. Ultimately the accuracy is not known except as it
may be estimated through Monte Carlo Simulation. For most
practical problems, SORM would provide sufficient accuracy.
When constraints are not ! active or when constraints are locally
linear, FORM is used to create linear subproblems, otherwise
SORM is used. In addition to the FORM/SORM switch, the algo-
rithm provides an adaptive initial trust region to improve effi-
ciency. Although the algorithm reduces the trust region by half
gradually, depending on the problem structure, we observed that
without calculating an appropriate trust region and just selecting
an arbitrary one will slow down convergence.

In Examples 1 and 2, due to the unbounded subproblems, an
appropriate "0 can reduce the iterations required before the next
trial point is acceptable. In contrast, Example 3 is more sensitive
to a smaller trust region. Constraints in Example 3 provide bounds
for the trial points, thus a large trust region does not serve as an
additional constraint. However, a small trust region can restrict the
step length and slow down convergence. Good convergence re-
sults are obtained even for an interior optimum, as in Example 2.
For Example 3, comparison of this SLP algorithm with SORA and
the single loop method shows SLP to have a good balance be-
tween accuracy and efficiency. Examples 1 and 2 have nonlinear
constraints but FORM is used throughout, because either the con-
straints are not active or the local curvature is flat with respect to
the input variability. If variability is increased, meaning that the
degree of uncertainty is larger, the algorithm will eventually use
SORM instead of FORM.

Global convergence of the original deterministic SLP-filter al-
gorithm is not affected by the proposed modifications. SORM

requires more computations than FORM and accuracy improve-
ment might seem limited from the examples. Depending on the
application, accuracy in evaluating constraint probabilities may or
may not be the main concern. In applications with small variations
and less focus on accuracy, designers can simply increase the
value of Ea such that only FORM is used. In applications where
local curvatures are unknown a priori, the range of a given input
variability can produce large errors in evaluating constraint prob-
abilities. The algorithm provides an additional mechanism to deal
with a situation where the optimum lies on a large curvature range
of the function where FORM would yield an inaccurate estimate.
One should also note that the algorithm is based on the assump-
tion that the local curvature is no higher than quadratic. Higher
nonlinearities will result in less accurate results.

We ignored the presence of random parameters in order to sim-
plify the presentation. If random parameters exist, the analysis and
the algorithm can be extended with minor modifications. One
could also consider parameters as variables with values con-
strained to be constants. Extension to non-normal correlated ran-
dom variables requires further investigation. Early study shows
that for non-normal random variables, since the “equivalent nor-
mal” conversion changes depending on the nominal values, a lin-
ear constraint may turn out to be highly nonlinear after conversion
to a deterministic equivalent one !37". The validity of assumptions
for convergence will need to be revisited.

Numerical noise generated by simulation-based models might
affect convergence speed due to inaccurate gradient calculation.
As shown in Fig. 12, noise in the simulation model results in
inaccurate gradient estimations at points b, c and d. Applying
finite differences with appropriate interval length can result in a
better gradient calculation as at point a. While too small a finite
difference interval considers noise as the actual model behavior,
too large an interval ignores the curvatures of the model. An ap-
propriate selection of interval size requires understanding the level
of noise as well as the function behavior.

Results from the illustrative examples provide a limited dem-
onstration and further testing with problems of realistic engineer-
ing complexity is desirable. As mentioned in the introduction, the
original motivation for seeking a SLP-based approach to this
problem was motivated by the expectation that such an approach
will lead to new and better coordination schemes in multilevel,
hierarchical probabilistic NLP problems. Realization of this po-
tential remains to be pursued.

Fig. 11 Example 4: Passive vehicle suspension

Fig. 12 Model noise
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Figure 5.5: Multi-level passive vehicle suspension design structure

pressed as Equation (5.11).
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System-level : Passive vehicle suspension design problem PV

min
c,ck,k,d,D

¯̈
Z2 = (πAV/m2)(ckk + (M +m)c2k−1) + πAL(c, k, d,D)

g1 = Pr

[
Pr

[(
πAVm

b0g2k

)((
ck

M + m
− c

M

)2

+
c2

Mm
+

ckk
2

mM2

)
− 1 ≤ 0

]
≥ Rt

]
≥ CB

g2 = Pr[Pr[7.6394(4000(Mg)−1.5c− 1)− 1 ≤ 0] ≥ Rt] ≥ CB

g3 = Pr[Pr[0.5(Mg)1/2(k2ckc
−1(M + m)−1 + c)−1/2 − 1 ≤ 0] ≥ Rt] ≥ CB

g4 = Pr[Pr[((M + m)g)0.877c−1
k − 1 ≤ 0] ≥ Rt] ≥ CB

(5.11)

The constraints g1 to g4 are constrained to achieve a certain confidence range to provide a

creditable reliability estimation. The reliability target is given as Rt = 0.9 and the confidence

range target is also given as CRt = 0.9. The confidence bound (CB) will be updated with the

increment of samples. The constraints’ confidence bound limit of optimum must satisfy the

confidence range target.

The two subsystem (damper system and spring system) design problem can be stated as

Equation (5.12) and (5.13). For each problem, the design objective is to minimize the devia-

tions between the targets and responses or linking variables. The damper design problem gets

the response k from analysis model h1, and the spring design problem gets the response c from

analysis model h2. The variables d and D are subsystem linking variables. The parameters

kU , cU , dU , DU are target values cascaded down from passive vehicle suspension design prob-

lem. The constraints g5, g6 are constrained to achieve a certain confidence range to provide a

creditable reliability estimation. The reliability target is given as Rt = 0.9 and the confidence

range target is also given as CRt = 0.9. The confidence bound (CB) will be updated with the

increment of samples. The constraints’ confidence bound limit of optimum must satisfy the

confidence range target.
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Subsystem level : Damper design problem PD

min
k,dP ,dS ,dO,d,D

(k − kU)2 + (d− dU)2 + (D −DU)2

g6 = Pr [Pr [Re− 5000 ≤ 0] ≥ Rt] ≥ CB

g7 = dP − (D − d) ≤ 0

g8 = dO −
dP − dS

2
≤ 0

h1 : k = 128ν
(d2
P − d2

S)/4)2

d4
OLt

where

Re =
ρoilvoildO

ν

(5.12)

Subsystem level : Spring design problem PS

min
c,ic,d,D

(c− cU)2 + (d− dU)2 + (D −DU)2

g5 = Pr [Pr [τspring − τadm ≤ 0] ≥ Rt] ≥ CB

h2 : c =
d4G

8D3ic

where

τspring =
8FD

πd3
+

4F

πd2

(5.13)

5.2.3 Optimal Results and Discussion

In this section, the optimal results of all-in-one system design and multi-level system design

would be given and discussed. We focus on the results of sampling augmentation application

of multi-level system. First, the optimal results will be compared between all-in-one system

design and multi-level system design, then the detailed results of all-in-one system would be

demonstrated, and then the optimal results of multi-level system design would be shown. The

results of deterministic design, RBDO, and RBDO with inadequate uncertainty data would be

compared. We will use Monte Carlo Simulation to acquire the reliability value of the optimal

points, which referred as MCS reliability denoted as RMCS) to represent as true reliability.

About the RBDO with inadequate uncertainty data, the Bayesian reliability RB defined in
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section 3.1.2 is used to represent the estimation value of the reliability distribution.

In section 2.3.3, two types of MCMC filter mechanisms are proposed. The difference

between these two filters is that when a new sample is rejected, one replicate the previous sample

as a new one which the other one take a completely new measurement sample. Therefore, we

have three scenarios in our study. Scenario 1 is sampling augmentation with MCMC of accepting

current sample which means that when rejected sample occurs, the current sample be accepted

as an additional sample. Scenario 2 is sampling augmentation with MCMC of accepting an

additional sample which means that when rejected sample occurs, the filter mechanism will

continue still an acceptable samples appear. Scenario 3 is sampling augmentation without

MCMC filter mechanism. In the following, these three scenarios would be compared to show

the effectiveness of MCMC filter.

Comparison of Optimal Results between All-in-One System and Multi-Level Sys-

tem

Table 5.6 shows the optimization results obtained from the all-in-one and the analytical target

cascading models. And the optimization results with different level of uncertainties are also

given. The ATC solutions were obtained following top-down implementation fashion. After

solving the system level, and the subsystem problem were cascaded based on the optimal design

at the system level, and the subsystem optimal designs were passed back to the system level

after minimizing deviations between the responses and targets. This top-down and bottom-up

process completed one iteration loop in the ATC process and it was repeated until convergence.

The objective function values of deterministic and RBDO in all-in-one system and multi-

level system are quite close, respectively as shown in Table 5.6. But the objective function

values of three types sampling augmentation process are different in all-in-one system and

multi-level system. The insistency of sample information in multi-level system would affect

the search of optimum. Although the optimum of multi-level system is different as all-in-one

system, it still give an acceptable optimal design. As the overall results of RMCS, the all-in-one

system provide a higher reliability results, and higher confidence range about the reliability

distribution which is larger than the reliability target.
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Table 5.6: Comparison all in one and ATC optimal result with and without MCMC

¯̈
Z2 RMCS Confidence range

All-in-one

Deterministic 2819049 (1,0.496,0.498,0.499,1,1) N/A

RBDO 2881346 (1,0.90,0.90,0.90,1,1) N/A

Scenario 1 2927656 (1,0.9404,1,0.9365,1,1) (1,1,1,1,1,1)

Scenario 2 2899148 (1,0.9404,0.9385,0.9808,1,1) (1,1,1,1,1,1)

Scenario 3 2899148 (1,0.9404,0.9385,0.9808,1,1) (1,1,1,1,1,1)

Multi-level

Deterministic 2819019 (1,0.496,0.498,0.498,1,1) N/A

RBDO 2887505 (1,0.90,1,0.90,1,1) N/A

Scenario 1 2888959 (0.9999,0.9215,0.9223,0.9468,1,1) (1,0.940,1,1,1,1)

Scenario 2 2976893 (0.9496,0.9215,1,1,1,1) (0.9496,0.9215,1,1,1,1)

Scenario 3 3051018 (0.70,0.9215,1,1,1,1) (0.9496,0.9215,1,1,1,1)

Optimal Results in All-in-One System

Table 5.7 shows the comparison of deterministic, RBDO ,RBDO with inadequate uncertainty

data (MCMC of accepting current sample). Deterministic design is assumed that there are no

uncertainties, in other words, we assume that we exactly know the parameter values. The opti-

mum of deterministic optimization should be more affirmatory than which with uncertainties.

RBDO with inadequate uncertainty data should be the most conservative one of these three

types optimization problems. Due to lack of information about the uncertainties, the reliability

estimation in RBDO with inadequate uncertainty data is also regarded as a uncertain quantity.

Therefore, the reliability becomes a distribution and the reliability estimation should confirm

a certain degree confidence range target (the concept is the same as the reliability value of this

reliability distribution). In order to confirm the confidence range of reliability distribution, the

optimum becomes most conservative one of these three types optimization problems. Although

RBDO with inadequate uncertainty data is the most conservative one, it still give an acceptable

optimal results.

In the practical engineering community, the characteristics of underlying distribution about

the uncertainty cannot be actually known, what we can do is measuring sampling from the un-

derlying distribution and make inference about the underlying distribution. Optimal sampling
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Table 5.7: Comparison of optimal results in all-in-one problem

AiO With MCMC(current sample) AiO RBDO Aio Deterministic

d (mm) 5.3256 5.112 4.972

D (mm) 120.4 116.0 112.5

ic 12 12 12

dP (mm) 20.17 20.58 15.97

dS (mm) 10.58 10.60 10.00

dO (mm) 3.907 4.143 2.932

c 388.0 446.8 401.3

ck 1440 1438 1426

k 23.90 20.77 20.79
¯̈
Z2 2927656 2881346 2819049

RMCS (1,0.9404,1,0.9365,1,1) (1,0.90,0.90,0.90,1,1) (1,0.496,0.498,0.499,1,1)

Confidence range (1,1,1,1,1,1) N/A N/A

augmentation provide an acceptable estimation of reliability distribution via measuring addi-

tional samples during optimization iterations. And we can save a lot of fund to sampling great

amount of samples to represent the underlying distribution of uncertainty .

Table 5.8 shows the comparison of three types sampling augmentation processes. Three

sampling augmentation processes give additional measurements on parameter M relative to the

critical constraint g4. The filter mechanism MCMC would help the convergency of optimization

in sampling augmentation process. Scenario 3 need to cast 43 additional samples to obtain a

feasible solution. Yet, both two sampling augmentation with MCMC (Scenario 2 and 3) cast

fewer samples to give acceptable solutions. Because the biased samples would make the reliabil-

ity estimation unstable, and the confidence range of reliability distribution would fluctuate up

and down, then the search directions of optimization would be affected by fluctuated confidence

range values.

Although scenario 2 give a better optimum than which scenario 1 given, it use more

samples actually (20+14 v.s. 20). Scenario 1 replicate the previous sample as a new one when

a new sample is rejected. In the view of limit resource of measurement, we can assert that the
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Table 5.8: Comparison of optimal results in all-in-one problem with filter mechanism

Scenario 1 Scenario 2 Scenario 3

d (mm) 5.3256 5.177 5.177

D (mm) 120.4 117.4 117.4

ic 12 12 12

dP (mm) 20.17 20.04 20.04

dS (mm) 10.58 10.57 10.57

dO (mm) 3.907 3.999 3.999

c 388.0 388.0 388.0

ck 1440 1446 1446

k 23.90 21.04 21.04
¯̈
Z2 2927656 2899148 2899148

RB (0.99,0.99,0.99,0.99,0.99,0.99) (0.99,0.94,0.91,0.96,0.99,0.99) (1,0.92,0.91,0.96,1,1)

RMCS (1,0.94,1,0.94,1,1) (1,0.94,0.94,0.98,1,1) (1,0.94,0.94,0.98,1,1)

Confidence range (1,1,1,1,1,1) (1,1,0.98,1,1,1) (1,1,0.98,1,1,1)

Adding procedure 20 on M 20 on M 43 on M

No.rejected sample 7 14 N/A

No. combination 352 352 720

Active constraint g4 g4 g4

sampling augmentation with MCMC of accepting current sample is the best one choice when

we want to use the least samples.

Optimization Results in Multi-Level System

Table 5.9 shows the comparison of deterministic, RBDO ,RBDO with inadequate uncertainty

data (MCMC of accepting current sample). In intuitive, the less amount of information, the

more conservative optimal result obtained. The optimal results of RBDO with inadequate

uncertainty data should be the most conservative one. The function value
¯̈
Z2 shows that the

RBDO with inadequate uncertainty data is the most conservative one. We know that relia-

bility estimation in RBDO with inadequate uncertainty data could be regarded as a uncertain
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Table 5.9: Comparison of optimal results of passive vehicle suspension design in complex system

Mutli-level With MCMC(current sample) Mutli-level RBDO Mutli-level Deterministic

d (mm) 8.894 8.890 8.851

D (mm) 200 200 200

ic 20 20 20

dP (mm) 22.50 20.00 19.64

dS (mm) 10.00 12.16 10.29

dO (mm) 1.00 3.691 3.941

c 387.2 386.6 379.8

ck 1441 1438 1426

k 21.04 21.96 20.77
¯̈
Z2 2888959 2887505 2819019

RMCS (0.9999,0.9215,0.9223,0.9468,1,1) (1,0.90,1,0.90,1,1) (1,0.496,0.498,0.498,1,1)

Confidence range (1,0.940,1,1,1,1) N/A N/A

quantity as previous assertion. The reliability should achieve a certain confidence level the

satisfying the probability of the reliability distribution larger than the reliability target should

be bigger than the confidence range target. Therefore, in order to comply with the confidence

range target, the optimum becomes more conservative than which of RBDO obtained. Yet,

the sampling augmentation is given a quite closer optimum comparing to which RBDO given.

Sampling augmentation cast additional samples to increase the accuracy of reliability estima-

tion during optimization iterations. Therefore, we can save a lot of fund to sampling great

amount of samples to represent the underlying distribution of uncertainty ( we use 106 samples

to simulate the underlying distribution ) by using the sampling augmentation with MCMC.

The comparison of optimal result with filter mechanisms is provided in Table 5.10. Three

sampling augmentation processes give additional measurements on parameter M relative to the

critical constraint g4. Both sampling augmentations with MCMC perform better on function

value
¯̈
Z2 than on which without MCMC. The geometry design of spring have no significant

difference. The most difference is the design of tire stiffness ck. The convergency rate would

be improved by MCMC filter mechanism. As Table 5.10 shown,scenario 3 uses 50 additional
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Table 5.10: Comparison of optimal results in complex system with filter mechanism

Scenario 1 Scenario 2 Scenario 3

d (mm) 8.894 8.894 8.894

D (mm) 200 200 200

ic 20 20 20

dP (mm) 22.50 22.66 22.96

dS (mm) 10.00 10.00 10.00

dO (mm) 1.00 1.00 1.00

c 387.2 386.6 379.8

ck 1441 1518 1569

k 21.04 21.85 22.92
¯̈
Z2 2888959 2976893 3051018

RB (1,0.91,1,1,1,1) (1,0.91,1,1,1,1) (0.99,0.99,1,1,1,1)

RMCS (0.9999,0.9215,0.9223,0.9468,1,1) (0.9496,0.9215,1,1,1,1) (0.70,0.9215,1,1,1,1)

Confidence range (1,0.99,1,1,1,1) (1,0.99,1,1,1,1) (0.99,0.99,1,1,1,1)

Adding procedure 40 on M 40 on M 50 on M

No.rejected sample 20 14 N/A

No. combination 672 672 848

Active constraint g4 g4 g4

samples (and 50 optimization iterations) to obtain the feasible solution and the reliability

is poor comparing with optimum with MCMC. Because the biased samples would affect the

reliability inference and then the confidence range of reliability distribution becomes unstable

and fluctuated. The convergent rate may be slow down when the inconsistency of constraint

value (confidence range) occurred. By the filter mechanism, the effect of biased samples can be

eliminated, then the convergent rate can be improved.

Both sampling augmentation with MCMC use same number of samples to make inference

in optimization models, however, scenario 2 casts more additional samples. Actually, the filter

mechanism MCMC of accepting an additional samples measures additional samples until an

acceptable samples occur when the rejected sample exists. So the number of additional samples
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of scenario 2 is 40+14 = 54, which is more than scenario 1 (40). Scenario 1 spend less additional

samples to perform optimization, it gives a set of optimal point with smaller function value

and higher RB than which with MCMC of accepting an additional sample. Therefore, we can

assert that sampling augmentation with MCMC of accepting current sample could use the least

samples to provide a creditable reliability estimation and optimal result.

5.3 Summary

In this chapter, we extend the sampling augmentation to multi-level system design with inade-

quate uncertainty data. In engineering community, the multi-level systems design is necessary.

No single design group could handle a complex system design problem. If there are also inade-

quate uncertainty data in multi-level system design problem, the sampling augmentation would

also be helpful to use fewer samples to estimate reliability and allocate the resource efficiently.

We see all constraints in different system level design problem to decide which constraint is

critical one which is same as the all-in-one system. Because the measurement of samples is

expensive, the efficient resource allocation is prerequisite. We only measure additional samples

when the corresponding uncertain parameter is important.

However, allocating resource efficiently is not enough, measurements sometimes will go

wrong, the filter mechanism MCMC is used to avoid higher biased samples. Both two sampling

augmentations with MCMC filter give a significant effect on filtering biased samples and im-

provement of convergency of optimization. We use the concept of sample combination instead

of a set of all uncertainties to do Bayesian binomial inference. The Bayesian reliability RB is

quite close to the MCS reliability RMCS, therefore, we can assert that the concept of sample

combination helps us to reveal all possible situations that each sample be matched and give a

creditable reliability estimation. In this chapter, we can see that the sampling augmentation

could also be applied to multi-level system design and have a good performance on reliability

estimation and resource allocation.
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Chapter 6 Conclusions and Future Work

6.1 Conclusions

The goal of this thesis is to provide a systematic approach for sample augmentation such that

the final reliability estimation of a complex system can be acceptable to a specific level.

In Chapter 2, the evaluation of reliability with inadequate uncertainty data is done via

Bayesian inference. An MCMC sample data filter is also developed to avoid the influence of

biased samples. In Chapter 3, an optimal sampling augmentation in RBDO with inadequate

uncertainty data is proposed to cast additional samples with least resources. The addition of

samples is decided based on the allocation of resources and based on the quality of the samples

and the biased samples are filtered via MCMC. In Chapter 4, two case studies in single level

system are demonstrated to show the validity of the proposed method. In Chapter 5, the

proposed method is extended to multilevel system to reveal the real complexity of engineering

design.

The specific contributions of this thesis are summarized into four main points :

1. This thesis uses limited samples to give an acceptable optimal result and

accurate reliability estimation : The measurement of samples can be costly. In

literature, the amount of samples used to perform reliability analysis is still too large.

In this thesis, we proposed an optimal sampling augmentation and resource allocation

for engineering design. The concept of sample combinations not only reveal all possible

situations of samples but also decrease the amount of samples requires to infer a reliability

distribution.

2. This thesis allocates resource more efficiently : The differences of uncertainties

can only be reveal with the concept of sample combinations. We can cast additional

samples only when they are important instead of measuring all uncertainties, therefore,

the unnecessary redundant measurements can be avoided. The samples on constraints

with lowest confidence range and uncertainties with high sensitivity are added. With this

strategy we could use the least resource to reach a desired reliability goal.
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3. This thesis filters biased samples via Markov chain Monte Carlo method :

Badly measured samples will affect the accuracy of reliability estimation. The biased

samples will also influence the convergency of optimization due to the unstable of con-

fidence range which corresponded to constraint. The proposed provides a a mechanism

to avoid the influence of such biased samples. With the MCM filter, advert effects of

biased samples can be avoided such that one does not need to cast much more samples to

alleviate the influence of biased samples. In addition, the reliability estimation and the

optimal sampling augmentation become more robust.

4. This thesis extents the proposed method to multilevel systems : Modern

engineering products are complex systems design. Designer of these products are sepa-

rated into several groups to handle different part of design. Inadequate uncertainty data

also exist in this architecture. The proposed sampling augmentation method can assist

designers to use limited samples to give an acceptable yet reliability optimal solution.

6.2 Future Work

The following research activities deserve much in-depth investigation in the future :

1. Take the cost of measurement into consideration. Different uncertainties may have differ-

ent measurement cost. Under the cost limit, the number of samples might be constrained

and the resource allocation strategy should be modified.

2. Considerate the dependency of uncertainties. The sensitivity analysis in resource al-

location is assumed that the uncertainties are independent. Unfortunately uncertainties

sometimes influence each others. The sensitivity analysis of these dependent uncertainties

can be taken into consideration.

3. Deal with design problem with inadequate uncertainty data in objective function. In

this thesis, when objective function is also with inadequate uncertainty data, we use the

average value of samples data then make it become a deterministic objective function.

The probability value of objective function with inadequate uncertainty data need to be

discussed.
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